cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A123709 a(n) is the number of nonzero elements in row n of triangle A123706.

Original entry on oeis.org

1, 2, 3, 4, 3, 4, 3, 4, 4, 6, 3, 8, 3, 6, 7, 4, 3, 8, 3, 8, 7, 6, 3, 8, 4, 6, 4, 8, 3, 11, 3, 4, 7, 6, 7, 8, 3, 6, 7, 8, 3, 11, 3, 8, 8, 6, 3, 8, 4, 8, 7, 8, 3, 8, 7, 8, 7, 6, 3, 16, 3, 6, 8, 4, 7, 12, 3, 8, 7, 14, 3, 8, 3, 6, 8, 8
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2006

Keywords

Comments

Triangle A123706 is the matrix inverse of triangle A010766, where A010766(n,k) = [n/k]. a(n) = 4 when n is in A123710. a(n) = 8 when n is in A123711. a(n) = 16 when n is in A123712.

Examples

			a(n) = 3 when n is an odd prime.
a(n) = 7 when n is the product of two different odd primes.  [Corrected by _M. F. Hasler_, Feb 13 2012]
a(n) = 15 when n is the product of three different odd primes.  [Corrected by _M. F. Hasler_, Feb 13 2012]
		

Crossrefs

Programs

  • Mathematica
    Moebius[i_,j_]:=If[Divisible[i,j], MoebiusMu[i/j],0];
    A123709[n_]:=Length[Select[Table[Moebius[n,j]-Moebius[n,j+1],{j,1,n}],#!=0&]];
    Array[A123709, 500] (* Enrique Pérez Herrero, Feb 13 2012 *)
  • PARI
    {a(n)=local(M=matrix(n,n,r,c,if(r>=c,floor(r/c)))^-1); sum(k=1,n,if(M[n,k]==0,0,1))}
    
  • PARI
    A123709(n)=#select((matrix(n, n, r, c, r\c)^-1)[n,],x->x)  \\ M. F. Hasler, Feb 12 2012
    
  • PARI
    A123709(n)={ my(t=moebius(n)); sum(k=2,n, t+0 != t=if(n%k,0,moebius(n\k)))+1}  /* the "t+0 != ..." is required because of a bug in PARI versions <= 2.4.2, maybe beyond, which seems to be fixed in v. 2.5.1 */ \\ M. F. Hasler, Feb 13 2012

Formula

a(n) = 2^(m+1) - 1 when n is the product of m distinct odd primes. [Corrected by M. F. Hasler, Feb 13 2012]
For any k>1, a(n)=2^k if, and only if, n is a nonsquarefree number with A001221(n) = k-1 (= omega(n), number of distinct prime factors), with the only exception of a(n=6)=2^2. - M. F. Hasler, Feb 12 2012
A123709(n) = 1 + #{ k in 1..n-1 | Moebius(n,k+1) <> Moebius(n,k) }, where Moebius(n,k)={moebius(n/k) if n=0 (mod k), 0 else}, cf. link to message by P. Luschny. - M. F. Hasler, Feb 13 2012

A123711 Indices n such that A123709(n) = 8 = number of nonzero terms in row n of triangle A123706.

Original entry on oeis.org

12, 18, 20, 24, 28, 36, 40, 44, 45, 48, 50, 52, 54, 56, 63, 68, 72, 75, 76, 80, 88, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 124, 135, 136, 144, 147, 148, 152, 153, 160, 162, 164, 171, 172, 175, 176, 184, 188, 189, 192, 196, 200, 207, 208, 212, 216, 224, 225
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2006

Keywords

Comments

Triangle A123706 is the matrix inverse of triangle A010766, where A010766(n,k) = [n/k].
It appears that this equals A200511, numbers of the form p^k q^m with k,m >= 1, k+m > 2 and p, q prime. - M. F. Hasler, Feb 12 2012

Crossrefs

Programs

  • Mathematica
    Moebius[i_, j_] := If[Divisible[i, j], MoebiusMu[i/j], 0]; A123709[n_] :=
    Length[Select[Table[Moebius[n, j] - Moebius[n, j + 1], {j, 1, n}], # != 0 &]]; Select[Range[500], A123709[#] == 8 &] (* G. C. Greubel, Apr 22 2017 *)
  • PARI
    
    				

A123712 Indices n such that 16 = A123709(n) = number of nonzero terms in row n of triangle A123706.

Original entry on oeis.org

60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280, 294, 300, 306, 308, 312, 315, 336, 340, 342, 348, 350, 360, 364, 372, 378, 380, 396, 408, 414, 440, 444, 450, 456, 460, 468, 476, 480, 490, 492
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2006

Keywords

Comments

Triangle A123706 is the matrix inverse of triangle A010766, where A010766(n,k) = [n/k].
a(n) = A178212(n) for n <= 52, possibly more. [Reinhard Zumkeller, May 24 2010]
a(n) = A178212(n) for n <= 2000. - Bill McEachen, Jul 14 2024

Crossrefs

Programs

  • Mathematica
    Moebius[i_, j_] := If[Divisible[i, j], MoebiusMu[i/j], 0]; A123709[n_] := Length[Select[Table[Moebius[n, j] - Moebius[n, j + 1], {j, 1, n}], # != 0 &]]; Select[Range[6500], A123709[#] == 16 &] (* G. C. Greubel, Apr 22 2017 *)
  • PARI
    is(n)=my(M=matrix(n, n, r, c,r\c)^-1); sum(k=1, n, M[n, k]!=0)==16 \\ Charles R Greathouse IV, Feb 09 2012

A123707 a(n) = Sum_{k=1..n} A123706(n,k)*2^(k-1).

Original entry on oeis.org

1, 0, 1, 3, 7, 14, 31, 60, 126, 248, 511, 1005, 2047, 4064, 8183, 16320, 32767, 65394, 131071, 261885, 524255, 1048064, 2097151, 4193220, 8388600, 16775168, 33554304, 67104765, 134217727, 268427002, 536870911, 1073725440, 2147483135
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2006

Keywords

Comments

Triangle A123706 is the matrix inverse of triangle A010766(n,k) = [n/k].

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := If[Divisible[n, k], MoebiusMu[n/k], 0] - If[Divisible[n, k + 1], MoebiusMu[n/(k + 1)], 0]; Table[Sum[t[n, k]*2^(k - 1), {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Oct 26 2017 *)
  • PARI
    {a(n)=sum(k=1,n,(matrix(n,n,r,c,if(r>=c,floor(r/c)))^-1)[n,k]*2^(k-1))}

Formula

G.f.: Sum_{k>=1} mu(k) * x^k * (1 - x^k) / (1 - 2*x^k). - Ilya Gutkovskiy, Feb 06 2020
a(n) ~ 2^(n-2). - Vaclav Kotesovec, May 03 2025

A123708 a(n) = sum of unsigned elements in row n of triangle A123706.

Original entry on oeis.org

1, 3, 3, 4, 3, 5, 3, 4, 4, 7, 3, 8, 3, 7, 7, 4, 3, 8, 3, 8, 7, 7, 3, 8, 4, 7, 4, 8, 3, 13, 3, 4, 7, 7, 7, 8, 3, 7, 7, 8, 3, 13, 3, 8, 8, 7, 3, 8, 4, 8, 7, 8, 3, 8, 7, 8, 7, 7, 3, 16, 3, 7, 8, 4, 7, 13, 3, 8, 7, 15, 3, 8, 3, 7, 8, 8, 7, 13, 3, 8, 4, 7, 3, 16, 7, 7, 7, 8, 3, 16, 7, 8, 7, 7, 7, 8, 3, 8, 8, 8, 3, 13
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2006

Keywords

Comments

Triangle A123706 is the matrix inverse of triangle A010766, where A010766(n,k) = [n/k].

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := If[Divisible[n, k], MoebiusMu[n/k], 0] - If[Divisible[n, k + 1], MoebiusMu[n/(k + 1)], 0]; Table[Sum[Abs[t[n, k]], {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Oct 26 2017 *)
  • PARI
    {a(n)=local(M=matrix(n,n,r,c,if(r>=c,floor(r/c)))^-1);sum(k=1,n,abs(M[n,k]))}

A123710 Indices n such that 4 = A123709(n) = number of nonzero terms in row n of triangle A123706.

Original entry on oeis.org

4, 6, 8, 9, 16, 25, 27, 32, 49, 64, 81, 121, 125, 128, 169, 243, 256, 289, 343, 361, 512, 529, 625, 729, 841, 961, 1024
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2006

Keywords

Comments

Triangle A123706 is the matrix inverse of triangle A010766, where A010766(n,k) = [n/k].
Except for a(2)=6, these are proper prime powers, i.e., numbers p^k where k>1, p prime (A025475). - M. F. Hasler, Feb 12 2012

Crossrefs

Programs

Formula

a(n) = A025475(n) for n>2 (conjectured). - M. F. Hasler, Feb 12 2012

A350103 Triangle read by rows. Number of self-measuring subsets of the initial segment of the natural numbers strictly below n and cardinality k. Number of subsets S of [n] with S = distset(S) and |S| = k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 1, 6, 3, 2, 1, 1, 1, 1, 1, 7, 3, 2, 1, 1, 1, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 1, 1, 9, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 11, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Peter Luschny, Dec 14 2021

Keywords

Comments

We use the notation [n] = {0, 1, ..., n-1}. If S is a subset of [n] then we define the distset of S (set of distances of S) as {|x - y|: x, y in S}. We call a subset S of the natural numbers self-measuring if and only if S = distset(S).

Examples

			Triangle starts:
[ 0] [1]
[ 1] [1, 1]
[ 2] [1, 1,  1]
[ 3] [1, 1,  2, 1]
[ 4] [1, 1,  3, 1, 1]
[ 5] [1, 1,  4, 2, 1, 1]
[ 6] [1, 1,  5, 2, 1, 1, 1]
[ 7] [1, 1,  6, 3, 2, 1, 1, 1]
[ 8] [1, 1,  7, 3, 2, 1, 1, 1, 1]
[ 9] [1, 1,  8, 4, 2, 2, 1, 1, 1, 1]
[10] [1, 1,  9, 4, 3, 2, 1, 1, 1, 1, 1]
[11] [1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1]
[12] [1, 1, 11, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1]
.
The first  column is 1,1,...  because {} = distset({}) and |{}| = 0.
The second column is 1,1,... because {0} = distset({0}) and |{0}| = 1.
The third  column is n-1  because {0, j} = distset({0, j}) and |{0, j}| = 2 for j = 1..n - 1.
The main diagonal is 1,1,... because [n] = distset([n]) and |[n]| = n (these are the complete rulers A103295).
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> ifelse(k < 2, 1, floor((n - 1) / (k - 1))):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..12);
  • Mathematica
    distSet[s_] := Union[Map[Abs[Differences[#][[1]]] &, Union[Sort /@ Tuples[s, 2]]]]; T[n_, k_] := Count[Subsets[Range[0, n - 1]], ?((ds = distSet[#]) == # && Length[ds] == k &)]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Amiram Eldar, Dec 16 2021 *)
  • PARI
    T(n, k) = if(k<=1, 1, (n - 1) \ (k - 1)) \\ Winston de Greef, Jan 31 2024
  • SageMath
    # generating and counting (slow)
    def isSelfMeasuring(R):
        S, L = Set([]), len(R)
        R = Set([r - 1 for r in R])
        for i in range(L):
            for j in (0..i):
                S = S.union(Set([abs(R[i] - R[i - j])]))
        return R == S
    def A349976row(n):
        counter = [0] * (n + 1)
        for S in Subsets(n):
            if isSelfMeasuring(S): counter[len(S)] += 1
        return counter
    for n in range(10): print(A349976row(n))
    

Formula

T(n, k) = floor((n - 1) / (k - 1)) for k >= 2.
T(n, k) = 1 if k = 0 or k = 1 or n >= k >= floor((n + 1)/2).

A206706 Triangle read by rows, T(n,k) n>=0, 0<=k<=n; T(0,0) = -1 and for n > 0 T(n,k) = moebius(n,k+1) - moebius(n,k) where moebius(n,k) = mu(floor(n/k)) if k<>0 and k divides n, 0 otherwise; mu=A008683.

Original entry on oeis.org

-1, 1, -1, -1, 2, -1, -1, 1, 1, -1, 0, -1, 1, 1, -1, -1, 1, 0, 0, 1, -1, 1, -2, 0, 1, 0, 1, -1, -1, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 0, 0, 1, -1, 1, -2, 1, 0, -1, 1, 0, 0, 0, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0
Offset: 0

Views

Author

Peter Luschny, Feb 11 2012

Keywords

Comments

This is a variant of Paul D. Hanna's A123706 which uses a definition given by Mats Granvik. It adds the column T(n,0) = mu(n) at the left hand side of the triangle.
The value T(0,0) was set to -1 to make the triangle invertible as a matrix with uniform signs of the entries of the inverse.

Examples

			[ 0]                    -1,
[ 1]                   1, -1,
[ 2]                 -1, 2, -1,
[ 3]                -1, 1, 1, -1,
[ 4]              0, -1, 1, 1, -1,
[ 5]             -1, 1, 0, 0, 1, -1,
[ 6]           1, -2, 0, 1, 0, 1, -1,
[ 7]          -1, 1, 0, 0, 0, 0, 1, -1,
[ 8]        0, 0, 0, -1, 1, 0, 0, 1, -1,
[ 9]       0, 0, -1, 1, 0, 0, 0, 0, 1, -1,
The inverse of this triangle as a matrix begins
[-1,  0,  0,  0,  0,  0,  0]
[-1, -1,  0,  0,  0,  0,  0]
[-1, -2, -1,  0,  0,  0,  0]
[-1, -3, -1, -1,  0,  0,  0]
[-1, -4, -2, -1, -1,  0,  0]
[-1, -5, -2, -1, -1, -1,  0]
[-1, -6, -3, -2, -1, -1, -1]
		

Crossrefs

Programs

  • Maple
    with(numtheory): A206706 := proc(n,k) local moebius;
    moebius := (n, k) -> `if`(k<>0 and irem(n,k) = 0, mobius(iquo(n,k)), 0);
    moebius(n, k+1) - moebius(n, k) end:
  • Mathematica
    mu[n_, k_] := If[k != 0 && Divisible[n, k], MoebiusMu[n/k], 0];
    T[0, 0] = -1; T[n_, k_] /; 0 <= k <= n := mu[n, k+1] - mu[n, k];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
  • Sage
    def mur(n,k): return moebius(n//k) if k != 0 and n%k == 0 else 0
    def A206706(n,k) : return -1 if n==0 and k==0 else mur(n,k+1) - mur(n,k)
Showing 1-8 of 8 results.