cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A123709 a(n) is the number of nonzero elements in row n of triangle A123706.

Original entry on oeis.org

1, 2, 3, 4, 3, 4, 3, 4, 4, 6, 3, 8, 3, 6, 7, 4, 3, 8, 3, 8, 7, 6, 3, 8, 4, 6, 4, 8, 3, 11, 3, 4, 7, 6, 7, 8, 3, 6, 7, 8, 3, 11, 3, 8, 8, 6, 3, 8, 4, 8, 7, 8, 3, 8, 7, 8, 7, 6, 3, 16, 3, 6, 8, 4, 7, 12, 3, 8, 7, 14, 3, 8, 3, 6, 8, 8
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2006

Keywords

Comments

Triangle A123706 is the matrix inverse of triangle A010766, where A010766(n,k) = [n/k]. a(n) = 4 when n is in A123710. a(n) = 8 when n is in A123711. a(n) = 16 when n is in A123712.

Examples

			a(n) = 3 when n is an odd prime.
a(n) = 7 when n is the product of two different odd primes.  [Corrected by _M. F. Hasler_, Feb 13 2012]
a(n) = 15 when n is the product of three different odd primes.  [Corrected by _M. F. Hasler_, Feb 13 2012]
		

Crossrefs

Programs

  • Mathematica
    Moebius[i_,j_]:=If[Divisible[i,j], MoebiusMu[i/j],0];
    A123709[n_]:=Length[Select[Table[Moebius[n,j]-Moebius[n,j+1],{j,1,n}],#!=0&]];
    Array[A123709, 500] (* Enrique Pérez Herrero, Feb 13 2012 *)
  • PARI
    {a(n)=local(M=matrix(n,n,r,c,if(r>=c,floor(r/c)))^-1); sum(k=1,n,if(M[n,k]==0,0,1))}
    
  • PARI
    A123709(n)=#select((matrix(n, n, r, c, r\c)^-1)[n,],x->x)  \\ M. F. Hasler, Feb 12 2012
    
  • PARI
    A123709(n)={ my(t=moebius(n)); sum(k=2,n, t+0 != t=if(n%k,0,moebius(n\k)))+1}  /* the "t+0 != ..." is required because of a bug in PARI versions <= 2.4.2, maybe beyond, which seems to be fixed in v. 2.5.1 */ \\ M. F. Hasler, Feb 13 2012

Formula

a(n) = 2^(m+1) - 1 when n is the product of m distinct odd primes. [Corrected by M. F. Hasler, Feb 13 2012]
For any k>1, a(n)=2^k if, and only if, n is a nonsquarefree number with A001221(n) = k-1 (= omega(n), number of distinct prime factors), with the only exception of a(n=6)=2^2. - M. F. Hasler, Feb 12 2012
A123709(n) = 1 + #{ k in 1..n-1 | Moebius(n,k+1) <> Moebius(n,k) }, where Moebius(n,k)={moebius(n/k) if n=0 (mod k), 0 else}, cf. link to message by P. Luschny. - M. F. Hasler, Feb 13 2012

A123712 Indices n such that 16 = A123709(n) = number of nonzero terms in row n of triangle A123706.

Original entry on oeis.org

60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280, 294, 300, 306, 308, 312, 315, 336, 340, 342, 348, 350, 360, 364, 372, 378, 380, 396, 408, 414, 440, 444, 450, 456, 460, 468, 476, 480, 490, 492
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2006

Keywords

Comments

Triangle A123706 is the matrix inverse of triangle A010766, where A010766(n,k) = [n/k].
a(n) = A178212(n) for n <= 52, possibly more. [Reinhard Zumkeller, May 24 2010]
a(n) = A178212(n) for n <= 2000. - Bill McEachen, Jul 14 2024

Crossrefs

Programs

  • Mathematica
    Moebius[i_, j_] := If[Divisible[i, j], MoebiusMu[i/j], 0]; A123709[n_] := Length[Select[Table[Moebius[n, j] - Moebius[n, j + 1], {j, 1, n}], # != 0 &]]; Select[Range[6500], A123709[#] == 16 &] (* G. C. Greubel, Apr 22 2017 *)
  • PARI
    is(n)=my(M=matrix(n, n, r, c,r\c)^-1); sum(k=1, n, M[n, k]!=0)==16 \\ Charles R Greathouse IV, Feb 09 2012

A200511 Numbers n with omega(n)=2 and bigomega(n)>2, where omega=A001221=number of distinct prime factors, bigomega=A001222=prime factors counted with multiplicity.

Original entry on oeis.org

12, 18, 20, 24, 28, 36, 40, 44, 45, 48, 50, 52, 54, 56, 63, 68, 72, 75, 76, 80, 88, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 124, 135, 136, 144, 147, 148, 152, 153, 160, 162, 164, 171, 172, 175, 176, 184, 188, 189, 192, 196, 200, 207, 208, 212, 216, 224, 225, 232, 236
Offset: 1

Views

Author

M. F. Hasler, Feb 09 2012

Keywords

Comments

Equivalently, numbers of the form n=p^k*q^m where k,m>0, k+m>2 and p,q prime.
It appears that this is equal to A123711.

Crossrefs

Programs

  • Mathematica
    Select[Range[240], PrimeNu[#] == 2 && PrimeOmega[#] > 2 &] (* Jean-François Alcover, Jun 29 2013 *)
  • PARI
    for(n=1,999,bigomega(n)>2 & omega(n)==2 & print1(n","))

A123710 Indices n such that 4 = A123709(n) = number of nonzero terms in row n of triangle A123706.

Original entry on oeis.org

4, 6, 8, 9, 16, 25, 27, 32, 49, 64, 81, 121, 125, 128, 169, 243, 256, 289, 343, 361, 512, 529, 625, 729, 841, 961, 1024
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2006

Keywords

Comments

Triangle A123706 is the matrix inverse of triangle A010766, where A010766(n,k) = [n/k].
Except for a(2)=6, these are proper prime powers, i.e., numbers p^k where k>1, p prime (A025475). - M. F. Hasler, Feb 12 2012

Crossrefs

Programs

Formula

a(n) = A025475(n) for n>2 (conjectured). - M. F. Hasler, Feb 12 2012

A303661 Powers of squarefree semiprimes that are not squarefree.

Original entry on oeis.org

36, 100, 196, 216, 225, 441, 484, 676, 1000, 1089, 1156, 1225, 1296, 1444, 1521, 2116, 2601, 2744, 3025, 3249, 3364, 3375, 3844, 4225, 4761, 5476, 5929, 6724, 7225, 7396, 7569, 7776, 8281, 8649, 8836, 9025, 9261, 10000, 10648, 11236, 12321, 13225, 13924, 14161, 14884
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 28 2018

Keywords

Examples

			1089 is in the sequence because 1089 = 3^2*11^2.
1296 is in the sequence because 1296 = 2^4*3^4.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[15000], Length[Union[FactorInteger[#][[All, 2]]]] == 1 && PrimeNu[#] == 2 && ! SquareFreeQ[#] &]
    seq[max_] := Module[{sp = Select[Range[Floor@Sqrt[max]], SquareFreeQ[#] && PrimeNu[#] == 2 &], s = {}}, Do[s = Join[s, sp[[k]]^Range[2, Floor@Log[sp[[k]], max]]], {k, 1, Length[sp]}]; Union@s]; seq[10000] (* Amiram Eldar, Feb 12 2021 *)
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A303661(n):
        def g(x): return int(-(t:=primepi(s:=isqrt(x)))-(t*(t-1)>>1)+sum(primepi(x//k) for k in primerange(1, s+1)))
        def f(x): return n-1+x-sum(g(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 19 2024

Formula

Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/((A006881(n)-1)*A006881(n)) = Sum_{k>=2} (P(k)^2 - P(2*k))/2 = 0.07160601536406295068..., where P(k) is the prime zeta function. - Amiram Eldar, Feb 12 2021
Showing 1-5 of 5 results.