A123736 Triangle T(n,k) = Sum_{j=0..k/2} binomial(n-j-1,k-2*j), read by rows.
1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 3, 4, 3, 2, 1, 1, 0, 1, 4, 7, 7, 5, 3, 2, 1, 1, 0, 1, 5, 11, 14, 12, 8, 5, 3, 2, 1, 1, 0, 1, 6, 16, 25, 26, 20, 13, 8, 5, 3, 2, 1, 1, 0, 1, 7, 22, 41, 51, 46, 33, 21, 13, 8, 5, 3, 2, 1, 1, 0, 1, 8, 29, 63, 92, 97, 79, 54, 34, 21, 13, 8, 5, 3, 2, 1, 1, 0, 1
Offset: 1
Examples
The triangle starts in row n=1 with columns 0 <= k < 2*n: 1, 0; 1, 1, 1, 0; 1, 2, 2, 1, 1, 0; 1, 3, 4, 3, 2, 1, 1, 0; 1, 4, 7, 7, 5, 3, 2, 1, 1, 0; 1, 5, 11, 14, 12, 8, 5, 3, 2, 1, 1, 0; 1, 6, 16, 25, 26, 20, 13, 8, 5, 3, 2, 1, 1, 0; 1, 7, 22, 41, 51, 46, 33, 21, 13, 8, 5, 3, 2, 1, 1, 0; 1, 8, 29, 63, 92, 97, 79, 54, 34, 21, 13, 8, 5, 3, 2, 1, 1, 0;
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
- Eric Weisstein's World of Mathematics, Steenrod Algebra
Programs
-
GAP
Flat(List([1..10], n-> List([0..2*n-1], k-> Sum([0..Int(k/2)], j-> Binomial(n-j-1, k-2*j) )))); # G. C. Greubel, Sep 05 2019
-
Magma
[&+[Binomial(n-j-1, k-2*j): j in [0..Floor(k/2)]]: k in [0..2*n-1], n in [1..10]]; // G. C. Greubel, Sep 05 2019
-
Maple
seq(seq(sum(binomial(n-j-1, k-2*j), j=0..floor(k/2)), k=0..2*n-1), n=1..10); # G. C. Greubel, Sep 05 2019
-
Mathematica
Table[Sum[Binomial[n-j-1, k-2*j], {j,0,Floor[k/2]}], {n, 10}, {k, 0, 2*n-1}]//Flatten (* modified by G. C. Greubel, Sep 05 2019 *)
-
PARI
T(n,k) = sum(j=0, k\2, binomial(n-j-1, k-2*j)); for(n=1,10, for(k=0,2*n-1, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 05 2019
-
Sage
[[sum(binomial(n-j-1, k-2*j) for j in (0..floor(k/2))) for k in (0..2*n-1)] for n in (1..10)] # G. C. Greubel, Sep 05 2019
Comments