cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123738 Partial sums of (-1)^floor(n*Pi).

Original entry on oeis.org

-1, 0, -1, 0, -1, 0, -1, -2, -1, -2, -1, -2, -1, -2, -3, -2, -3, -2, -3, -2, -3, -4, -3, -4, -3, -4, -3, -4, -5, -4, -5, -4, -5, -4, -5, -6, -5, -6, -5, -6, -5, -6, -7, -6, -7, -6, -7, -6, -7, -8, -7, -8, -7, -8, -7, -8, -9, -8, -9, -8, -9, -8, -9, -10, -9, -10, -9, -10, -9, -10, -11, -10, -11, -10, -11, -10, -11, -12, -11, -12
Offset: 1

Views

Author

T. D. Noe, Oct 11 2006

Keywords

Crossrefs

Cf. A123724 (sum for 2^(1/3)), A123737 (sum for sqrt(2)), A123739 (sum for e).

Programs

  • Magma
    R:= RealField(20); [&+[(-1)^Floor(j*Pi(R)): j in [1..n]]: n in [1..130]]; // G. C. Greubel, Sep 05 2019
    
  • Mathematica
    Rest[FoldList[Plus,0,(-1)^Floor[Pi*Range[120]]]]
  • PARI
    vector(130, n, sum(j=1,n, (-1)^(j\(1/Pi))) ) \\ G. C. Greubel, Sep 05 2019
    
  • Sage
    [sum((-1)^floor(j*pi) for j in (1..n)) for n in (1..130)] # G. C. Greubel, Sep 05 2019