A123744 Circulants of Fibonacci numbers (including F_0 = 0).
1, 0, 1, 2, 16, 287, 16128, 2192140, 830952837, 805644641664, 2080690769701456, 14002804169885909807, 247753675148653634781184, 11469641168045182197979378136, 1391545878431673359565624090480585, 442017027765434652128920030338417270784, 367683484076057642925500106042968712221296320
Offset: 0
Examples
n=4: the circular 4 X 4 matrix is M(4) = matrix([[2,1,1,0],[0,2,1,1],[1,0,2,1],[1,1,0,2]]). n=4: 4th roots of unity: rho_4 = I, (rho_4)^2 = -1, (rho_4)^3 = -I, (rho_4)^4 =1, with I^2=-1. A123744 n=4: the eigenvalues of M(4) are therefore: 0*I^k + 1*(-1)^k + 1*(-I)^k + 2*1^k, k=1,...,4, namely 1-I, 2, 1+I, 4. n=4: a(4)= Det(M(4)) = 16 = (1-I)*2*(1+I)*4.
References
- P. J. Davis, Circulant Matrices, J. Wiley, New York, 1979.
Crossrefs
Programs
-
PARI
mm(n) = matdet(matrix(n, n, i, j, fibonacci(n-1-lift(Mod(j-i, n))))); \\ Michel Marcus, Aug 11 2019
Formula
a(n) = product(lambda^{(n)}k,k=1..n), with lambda^{(n)}_k=sum(F{j-1}*(rho_n)^(j*k),j=1..n).
a(n) = C_n([F_{n-1},F_{n-2},...,F_0]) with the Fibonacci numbers F_n:=A000045(n) and the circulant C_n (see comment above).
Extensions
More terms from Michel Marcus, Aug 11 2019
a(0)=1 prepended by Alois P. Heinz, Jun 27 2025
Comments