A123745 Circulants of Fibonacci numbers (without F_0 = 0).
1, 0, 4, 35, 1812, 170240, 46301673, 30413016864, 52171354014208, 228072747428273319, 2583414317082067853704, 75732718487930382583857152, 5773860969402842827019263155009, 1146353725688692827225795357533033072, 593830518002528577221255815133242142736384
Offset: 1
Examples
n=4: the circulant 4 X 4 matrix is M(4) = matrix([3,2,1,1],[1,3,2,1],[1,1,3,2],[2,1,1,3]). n=4: 4th roots of unity: rho_4 = I, (rho_4)^2 = -1, (rho_4)^3 = -I, (rho_4)^4 =1, with I^2=-1. n=4: the eigenvalues of M(4) are therefore 1*I^k + 1*(-1)^k + 2*(-I)^k + 3*1^k, k=1,...,4, namely 2-I,1,2+I,7. n=4: a(4)= Det(M(4)) = 35 = (2-I)*1*(2+I)*7.
References
- P. J. Davis, Circulant Matrices, J. Wiley, New York, 1979.
Crossrefs
Programs
-
PARI
a(n) = matdet(matrix(n, n, i, j, fibonacci(n-lift(Mod(j-i, n))))); \\ Michel Marcus, Aug 11 2019
Formula
a(n) = product(lambda^{(n)}k,k=1..n), with lambda^{(n)}_k=sum(F{j}*(rho_n)^(j*k),j=1..n).
a(n) = C_n([F_{n},F_{n-2},...,F_1]) with the Fibonacci numbers F_n:=A000045(n) and the circulant C_n (see comment above).
Comments