cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123747 Numerators of partial sums of a series for sqrt(5).

Original entry on oeis.org

1, 7, 41, 9, 239, 6227, 32059, 163727, 166301, 841229, 21215481, 106782837, 536618341, 538698461, 172897, 13538601629, 67813224223, 339532842359, 339895847771, 1700893049407, 42549895540939, 212857129279583, 1064706466190659, 1065035803419763, 5326468921246139
Offset: 0

Views

Author

Wolfdieter Lang, Nov 10 2006

Keywords

Comments

Denominators are given by A123748.
The sum over central binomial coefficients scaled by powers of 5, r(n) = Sum_{k=0..n} binomial(2*k,k)/5^k, has the limit lim_{n -> infinity} r(n) = sqrt(5). From the expansion of 1/sqrt(1-x) for x=4/5.

Examples

			a(3) = 9 because r(3) = 1+2/5+6/25+4/25 = 9/5 = a(3)/A123748(3).
		

Crossrefs

Cf. A001077/A001076 continued fraction convergents for sqrt(5).

Programs

  • GAP
    List([0..25], n-> NumeratorRat(Sum([0..n], k-> Binomial(2*k,k)/5^k )) ); # G. C. Greubel, Aug 10 2019
  • Magma
    [Numerator( (&+[Binomial(2*k,k)/5^k: k in [0..n]])): n in [0..25]]; // G. C. Greubel, Aug 10 2019
    
  • Maple
    A123747:=n-> numer(sum(binomial(2*k,k)/5^k, k=0..n)); seq(A123747(n), n=0..25); # G. C. Greubel, Aug 10 2019
  • Mathematica
    Table[Numerator[Sum[Binomial[2*k, k]/5^k, {k,0,n}]], {n, 0, 25}] (* G. C. Greubel, Aug 10 2019 *)
  • PARI
    vector(25, n, n--; numerator(sum(k=0,n, binomial(2*k,k)/5^k))) \\ G. C. Greubel, Aug 10 2019
    
  • Sage
    [numerator( sum(binomial(2*k,k)/5^k for k in (0..n)) ) for n in (0..25)] # G. C. Greubel, Aug 10 2019
    

Formula

a(n) = numerator(r(n)) with the rationals r(n) = Sum_{k=0..n} binomial(2*k,k)/5^k, in lowest terms.
r(n) = Sum_{k=0..n} ((2*k-1)!!/((2*k)!!))*(4/5)^k, n>=0, with the double factorials A001147 and A000165.