A123748
Denominators of partial sums of a series for sqrt(5).
Original entry on oeis.org
1, 5, 25, 5, 125, 3125, 15625, 78125, 78125, 390625, 9765625, 48828125, 244140625, 244140625, 78125, 6103515625, 30517578125, 152587890625, 152587890625, 762939453125, 19073486328125, 95367431640625, 476837158203125, 476837158203125, 2384185791015625
Offset: 0
a(3) = 5 because r(3) = 1+2/5+6/25+4/25 = 9/5 = A123747(3)/a(3).
-
List([0..25], n-> DenominatorRat(Sum([0..n], k-> Binomial(2*k,k)/5^k )) ); # G. C. Greubel, Aug 10 2019
-
[Denominator( (&+[Binomial(2*k,k)/5^k: k in [0..n]])): n in [0..25]]; // G. C. Greubel, Aug 10 2019
-
A123748:=n-> denom(sum(binomial(2*k,k)/5^k, k=0..n)); seq(A123748(n), n=0..25); # G. C. Greubel, Aug 10 2019
-
Table[Denominator[Sum[Binomial[2*k, k]/5^k, {k,0,n}]], {n, 0, 25}] (* G. C. Greubel, Aug 10 2019 *)
-
vector(25, n, n--; denominator(sum(k=0,n, binomial(2*k,k)/5^k))) \\ G. C. Greubel, Aug 10 2019
-
[denominator( sum(binomial(2*k,k)/5^k for k in (0..n)) ) for n in (0..25)] # G. C. Greubel, Aug 10 2019
A123749
Numerators of partial sums of a series for 3/sqrt(5) = (3/5)*sqrt(5).
Original entry on oeis.org
1, 11, 35, 965, 8755, 8783, 237449, 2138185, 6415985, 519743405, 4677875401, 14033861347, 378916960525, 3410263045325, 3410267502725, 30692424759805, 276231889624955, 828695755304725, 67124359204727825, 604119244624305025
Offset: 0
a(3) = 965 because r(3) = 1 + 2/9 + 2/27 + 20/729 = 965/729 = a(3)/A124396(3).
-
List([0..20], n-> NumeratorRat(Sum([0..n], k-> Binomial(2*k,k)/9^k )) ); # G. C. Greubel, Aug 10 2019
-
[Numerator( (&+[Binomial(2*k,k)/9^k: k in [0..n]])): n in [0..20]]; // G. C. Greubel, Aug 10 2019
-
A123749:=n-> numer(sum(binomial(2*k,k)/9^k, k=0..n)); seq(A123749(n), n=0..20); # G. C. Greubel, Aug 10 2019
-
Table[Numerator[Sum[Binomial[2*k, k]/9^k, {k,0,n}]], {n, 0, 20}] (* G. C. Greubel, Aug 10 2019 *)
-
vector(20, n, n--; numerator(sum(k=0,n, binomial(2*k,k)/9^k))) \\ G. C. Greubel, Aug 10 2019
-
[numerator( sum(binomial(2*k,k)/9^k for k in (0..n)) ) for n in (0..20)] # G. C. Greubel, Aug 10 2019
A124396
Denominators of partial sums of a series for 3/sqrt(5) = (3/5)*sqrt(5).
Original entry on oeis.org
1, 9, 27, 729, 6561, 6561, 177147, 1594323, 4782969, 387420489, 3486784401, 10460353203, 282429536481, 2541865828329, 2541865828329, 22876792454961, 205891132094649, 617673396283947, 50031545098999707, 450283905890997363
Offset: 0
a(3) = 729 because r(3) = 1 + 2/9 + 2/27 + 20/729 = 965/729 = A123749(3)/a(3).
-
List([0..20], n-> DenominatorRat(Sum([0..n], k-> Binomial(2*k, k)/9^k)) ); # G. C. Greubel, Dec 25 2019
-
[Denominator(&+[(k+1)*Catalan(k)/9^k: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 25 2019
-
seq(denom(add(binomial(2*k, k)/9^k, k = 0..n)), n = 0..20); # G. C. Greubel, Dec 25 2019
-
Table[Denominator[Sum[(k+1)*CatalanNumber[k]/9^k, {k,0,n}]], {n,0,20}] (* G. C. Greubel, Dec 25 2019 *)
-
a(n) = denominator(sum(k=0, n, binomial(2*k,k)/9^k)); \\ Michel Marcus, Aug 12 2019
-
[denominator(sum((k+1)*catalan_number(k)/9^k for k in (0..n))) for n in (0..20)] # G. C. Greubel, Dec 25 2019
A124397
Numerators of partial sums of a series for sqrt(5)/3.
Original entry on oeis.org
1, 3, 21, 17, 99, 2223, 12039, 56763, 59337, 286961, 7358781, 36088473, 183146521, 181066401, 36534213, 4535753121, 22798981683, 113528187171, 113891192583, 568042152363, 14228623114839, 71035463999307, 355598139789279, 14210752102407, 1777633916948199
Offset: 0
a(3) = 17 because r(3) = 1 - 2/5 + 6/25 - 4/25 = 17/25 = a(3)/A124398(3).
-
List([0..20], n-> NumeratorRat(Sum([0..n], k-> (-1)^k*Binomial(2*k, k)/5^k)) ); # G. C. Greubel, Dec 25 2019
-
[Numerator(&+[(-1)^k*(k+1)*Catalan(k)/5^k: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 25 2019
-
seq(numer(add((-1)^k*binomial(2*k, k)/5^k, k = 0..n)), n = 0..20); # G. C. Greubel, Dec 25 2019
-
Table[Numerator[Sum[(-1)^k*(k+1)*CatalanNumber[k]/5^k, {k,0,n}]], {n,0,20}] (* G. C. Greubel, Dec 25 2019 *)
-
a(n) = numerator(sum(k=0, n, ((-1)^k)*binomial(2*k,k)/5^k)); \\ Michel Marcus, Aug 11 2019
-
[numerator(sum((-1)^k*(k+1)*catalan_number(k)/5^k for k in (0..n))) for n in (0..20)] # G. C. Greubel, Dec 25 2019
A124398
Denominators of partial sums of a series for sqrt(5)/3.
Original entry on oeis.org
1, 5, 25, 25, 125, 3125, 15625, 78125, 78125, 390625, 9765625, 48828125, 244140625, 244140625, 48828125, 6103515625, 30517578125, 152587890625, 152587890625, 762939453125, 19073486328125, 95367431640625, 476837158203125, 19073486328125, 2384185791015625
Offset: 0
a(3) = 25 because r(3) = 1 - 2/5 + 6/25 - 4/25 = 17/25 = A124397(3)/a(3).
-
List([0..20], n-> DenominatorRat(Sum([0..n], k-> (-1)^k*Binomial(2*k, k)/5^k)) ); # G. C. Greubel, Dec 25 2019
-
[Denominator(&+[(-1)^k*(k+1)*Catalan(k)/5^k: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 25 2019
-
seq(denom(add((-1)^k*binomial(2*k, k)/5^k, k = 0..n)), n = 0..20); # G. C. Greubel, Dec 25 2019
-
Table[Denominator[Sum[(-1)^k*(k+1)*CatalanNumber[k]/5^k, {k,0,n}]], {n,0,20}] (* G. C. Greubel, Dec 25 2019 *)
-
a(n) = denominator(sum(k=0, n, ((-1)^k)*binomial(2*k,k)/5^k)); \\ Michel Marcus, Aug 11 2019
-
[denominator(sum((-1)^k*(k+1)*catalan_number(k)/5^k for k in (0..n))) for n in (0..20)] # G. C. Greubel, Dec 25 2019
Showing 1-5 of 5 results.
Comments