cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123864 Expansion of (eta(q^3) * eta(q^5))^2 / (eta(q) * eta(q^15)) in powers of q.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 0, 4, 1, 2, 0, 3, 0, 0, 1, 5, 2, 2, 2, 3, 0, 0, 2, 4, 1, 0, 1, 0, 0, 2, 2, 6, 0, 4, 0, 3, 0, 4, 0, 4, 0, 0, 0, 0, 1, 4, 2, 5, 1, 2, 2, 0, 2, 2, 0, 0, 2, 0, 0, 3, 2, 4, 0, 7, 0, 0, 0, 6, 2, 0, 0, 4, 0, 0, 1, 6, 0, 0, 2, 5, 1, 0, 2, 0, 2, 0, 0, 0, 0, 2, 0, 6, 2, 4, 2, 6, 0, 2, 0, 3, 0, 4, 0, 0
Offset: 0

Views

Author

Michael Somos, Oct 14 2006

Keywords

Comments

Number 31 of the 74 eta-quotients listed in Table I of Martin (1996).
Multiplicative because this sequence is the inverse Moebius transform of a multiplicative sequence Kronecker(-15, n). - Andrew Howroyd, Jul 27 2018

Examples

			G.f. = 1 + q + 2*q^2 + q^3 + 3*q^4 + q^5 + 2*q^6 + 4*q^8 + q^9 + 2*q^10 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(15), 1), 106); A[1] + A[2] + 2*A[3] + A[4] + 3*A[5] + A[6] + 2*A[7]; /* Michael Somos, Feb 10 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^3] QPochhammer[ q^5])^2 / ( QPochhammer[ q] QPochhammer[ q^15]), {q, 0, n}]; (* Michael Somos, Feb 10 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], Sum[ KroneckerSymbol[ -15, d], { d, Divisors[ n]}]]; (* Michael Somos, Feb 10 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv( n, d, kronecker( -15, d)))};
    
  • PARI
    {a(n) = if( n<1, n==0, (qfrep( [2, 1; 1, 8],n, 1) + qfrep( [4, 1; 1, 4], n, 1))[n])};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^5 + A))^2 / (eta(x + A) * eta(x^15 + A)), n))};
    

Formula

Euler transform of period 15 sequence [ 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -2, ...].
Moebius transform is period 15 sequence [ 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, ...].
G.f. A(q) satisfies 0 = f(A(q), A(q^2), A(q^4)) where f(u, v, w) = - v^3 + 4*u*v*w - 2*u*w^2 - u^2*w.
G.f.: Product_{k>0} ((1 - x^(3*k)) * (1 - x^(5*k)))^2 / ((1 - x^k) * (1 - x^(15*k))).
G.f.: (1/2) * (Sum_{n,m in Z} x^(n^2 + n*m + 4*m^2) + x^(2*n^2 + n*m + 2*m^2)).
a(15*n + 7) = a(15*n + 11) = a(15*n + 13) = a(15*n + 14) = 0. a(3*n) = a(n).
a(n) = A035175(n) unless n=0. a(n) = |A106406(n)| unless n=0.
G.f. is a period 1 Fourier series which satisfies f(-1 / (15 t)) = 15^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Feb 10 2015
a(n) = Sum_{d | n} Kronecker(-15, d). - Andrew Howroyd, Jul 27 2018
From Amiram Eldar, Feb 20 2024: (Start)
Multiplicative with a(p^e) = 1 if p = 3 or 5, e + 1 if Kronecker(-15, p) = 1, and 1 - (e mod 2) if Kronecker(-15, p) = -1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/sqrt(15). (End)