cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123920 Number of numbers congruent to 2 or 4 mod 6 between n and 2n inclusive.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 3, 4, 3, 4, 4, 4, 5, 6, 5, 6, 6, 6, 7, 8, 7, 8, 8, 8, 9, 10, 9, 10, 10, 10, 11, 12, 11, 12, 12, 12, 13, 14, 13, 14, 14, 14, 15, 16, 15, 16, 16, 16, 17, 18, 17, 18, 18, 18, 19, 20, 19, 20, 20, 20, 21, 22, 21, 22, 22, 22, 23, 24, 23, 24, 24, 24, 25, 26, 25, 26, 26, 26
Offset: 1

Views

Author

Giovanni Teofilatto, Oct 29 2006

Keywords

Crossrefs

Cf. A123919.

Programs

  • GAP
    a:=[1,2,1,2,2,2,3];; for n in [8..80] do a[n]:=a[n-1]+a[n-6]-a[n-7]; od; a; # G. C. Greubel, Aug 07 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( x*(1+x-x^2+x^3)/((1-x)*(1-x^6)) )); // G. C. Greubel, Aug 07 2019
    
  • Maple
    seq(coeff(series(x*(1+x-x^2+x^3)/((1-x)*(1-x^6)), x, n+1), x, n), n = 1..80); # G. C. Greubel, Aug 07 2019
  • Mathematica
    f[n_]:= Floor[n/2] - Floor[n/6]; Table[f[2n] - f[n-1], {n, 80}] (* Robert G. Wilson v *)
    Table[Count[Range[n,2n],?(MemberQ[{2,4},Mod[#,6]]&)],{n,80}] (* _Harvey P. Dale, Mar 25 2019 *)
    LinearRecurrence[{1,0,0,0,0,1,-1}, {1,2,1,2,2,2,3}, 80] (* G. C. Greubel, Aug 07 2019 *)
  • PARI
    my(x='x+O('x^80)); Vec(x*(1+x-x^2+x^3)/((1-x)*(1-x^6))) \\ G. C. Greubel, Aug 07 2019
    
  • Sage
    def A123920_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+x-x^2+x^3)/((1-x)*(1-x^6)) ).list()
    a=A123920_list(80); a[1:] # G. C. Greubel, Aug 07 2019
    

Formula

a(n) = 2k - 1 for n = {6k - 5, 6k - 3}, where k = 1,2,3,... a(n) = 2k for n = {6k - 4, 6k - 2, 6k - 1, 6k}, where k = 1,2,3,... - Alexander Adamchuk, Nov 08 2006
G.f.: x*(1+x-x^2+x^3)/((1-x)*(1-x^6)). - G. C. Greubel, Aug 07 2019

Extensions

Corrected and extended by Robert G. Wilson v, Oct 29 2006
More terms from Alexander Adamchuk, Nov 08 2006