A123920 Number of numbers congruent to 2 or 4 mod 6 between n and 2n inclusive.
1, 2, 1, 2, 2, 2, 3, 4, 3, 4, 4, 4, 5, 6, 5, 6, 6, 6, 7, 8, 7, 8, 8, 8, 9, 10, 9, 10, 10, 10, 11, 12, 11, 12, 12, 12, 13, 14, 13, 14, 14, 14, 15, 16, 15, 16, 16, 16, 17, 18, 17, 18, 18, 18, 19, 20, 19, 20, 20, 20, 21, 22, 21, 22, 22, 22, 23, 24, 23, 24, 24, 24, 25, 26, 25, 26, 26, 26
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
Crossrefs
Cf. A123919.
Programs
-
GAP
a:=[1,2,1,2,2,2,3];; for n in [8..80] do a[n]:=a[n-1]+a[n-6]-a[n-7]; od; a; # G. C. Greubel, Aug 07 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 80); Coefficients(R!( x*(1+x-x^2+x^3)/((1-x)*(1-x^6)) )); // G. C. Greubel, Aug 07 2019 -
Maple
seq(coeff(series(x*(1+x-x^2+x^3)/((1-x)*(1-x^6)), x, n+1), x, n), n = 1..80); # G. C. Greubel, Aug 07 2019
-
Mathematica
f[n_]:= Floor[n/2] - Floor[n/6]; Table[f[2n] - f[n-1], {n, 80}] (* Robert G. Wilson v *) Table[Count[Range[n,2n],?(MemberQ[{2,4},Mod[#,6]]&)],{n,80}] (* _Harvey P. Dale, Mar 25 2019 *) LinearRecurrence[{1,0,0,0,0,1,-1}, {1,2,1,2,2,2,3}, 80] (* G. C. Greubel, Aug 07 2019 *)
-
PARI
my(x='x+O('x^80)); Vec(x*(1+x-x^2+x^3)/((1-x)*(1-x^6))) \\ G. C. Greubel, Aug 07 2019
-
Sage
def A123920_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x*(1+x-x^2+x^3)/((1-x)*(1-x^6)) ).list() a=A123920_list(80); a[1:] # G. C. Greubel, Aug 07 2019
Formula
a(n) = 2k - 1 for n = {6k - 5, 6k - 3}, where k = 1,2,3,... a(n) = 2k for n = {6k - 4, 6k - 2, 6k - 1, 6k}, where k = 1,2,3,... - Alexander Adamchuk, Nov 08 2006
G.f.: x*(1+x-x^2+x^3)/((1-x)*(1-x^6)). - G. C. Greubel, Aug 07 2019
Extensions
Corrected and extended by Robert G. Wilson v, Oct 29 2006
More terms from Alexander Adamchuk, Nov 08 2006