A123973 Sequence of tridiagonal matrices with one center zero terminal that give a triangular sequence from the characteristic polynomials based on the 3 X 3 matrix type: {{1, -1, 0}, {-1, 1, -1}, {0, -1, 0}}.
0, 0, -1, -1, -1, 1, -1, 1, 2, -1, 0, 3, 0, -3, 1, 1, 2, -5, -2, 4, -1, 1, -2, -7, 6, 5, -5, 1, 0, -5, 0, 15, -5, -9, 6, -1, -1, -3, 12, 9, -25, 1, 14, -7, 1, -1, 3, 15, -18, -29, 35, 7, -20, 8, -1, 0, 7, 0, -42, 14, 63, -42, -20, 27, -9, 1
Offset: 1
Examples
Triangle begins: {0}, {0, -1}, {-1, -1, 1}, {-1, 1, 2, -1}, {0, 3, 0, -3, 1}, {1, 2, -5, -2, 4, -1}, {1, -2, -7, 6, 5, -5, 1}, {0, -5, 0, 15, -5, -9, 6, -1}, {-1, -3, 12, 9, -25, 1, 14, -7, 1}, {-1, 3, 15, -18, -29, 35,7, -20, 8, -1}, {0, 7, 0, -42, 14, 63, -42, -20, 27, -9, 1} Some of the polynomials are Steinbach.
Programs
-
Mathematica
T[n_, m_, d_] := If[ n == m && n < d && m < d, 1, If[n == m - 1 || n == m + 1, -1, If[n == m == d, 0, 0]]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] Table[M[d], {d, 1, 10}] Table[Det[M[d]], {d, 1, 10}] Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}] a = Join[M[1], Table[CoefficientList[Det[M[ d] - x*IdentityMatrix[d]], x], {d, 1, 10}]] Flatten[a] MatrixForm[a]
Formula
t(n,m,d)=If[ n == m && n < d && m < d, 1, If[n == m - 1 || n == m + 1, -1, If[n == m == d, 0, 0]]]
Extensions
Looking at the triangle suggests that the very first term should be 1, not 0, see A098493. - N. J. A. Sloane, Nov 01 2006
Comments