cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123976 Numbers k such that Fibonacci(k-1) is divisible by k.

Original entry on oeis.org

1, 11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199, 211, 229, 239, 241, 251, 269, 271, 281, 311, 331, 349, 359, 379, 389, 401, 409, 419, 421, 431, 439, 442, 449, 461, 479, 491, 499, 509, 521, 541, 569, 571, 599, 601
Offset: 1

Views

Author

Tanya Khovanova, Oct 30 2006

Keywords

Comments

a(n) is a union of {1}, A069106(n) and A045468(n). Composite a(n) are listed in A069106(n) = {442, 1891, 2737, 4181, 6601, 6721, 8149, ...}. Prime a(n) are listed in A045468(n) = {11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199, ...} Primes congruent to {1, 4} mod 5. - Alexander Adamchuk, Nov 02 2006

Examples

			Fibonacci(10) = 55, is divisible by 11.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a123976 n = a123976_list !! (n-1)
    a123976_list = map (+ 1) $ elemIndices 0 $ zipWith mod a000045_list [1..]
    -- Reinhard Zumkeller, Oct 13 2011
    
  • Mathematica
    Select[Range[1000], IntegerQ[Fibonacci[ # - 1]/# ] &]
  • PARI
    is(n)=((Mod([1,1;1,0],n))^n)[2,2]==0 \\ Charles R Greathouse IV, Feb 03 2014