A124011 Add three, add six, add nine, ....
5, 8, 14, 23, 35, 50, 68, 89, 113, 140, 170, 203, 239, 278, 320, 365, 413, 464, 518, 575, 635, 698, 764, 833, 905, 980, 1058, 1139, 1223, 1310, 1400, 1493, 1589, 1688, 1790, 1895, 2003, 2114, 2228, 2345, 2465, 2588, 2714, 2843, 2975, 3110, 3248, 3389, 3533, 3680
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[5,8,14]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 15 2012
-
Mathematica
LinearRecurrence[{3,-3,1},{5,8,14},50] (* Vincenzo Librandi, Feb 15 2012 *) Table[(3x^2-3x+10)/2,{x,50}] (* Harvey P. Dale, Jul 25 2019 *) Accumulate[3*Range[0,50]]+5 (* Harvey P. Dale, Jan 16 2024 *)
-
PARI
a(n)=3*n*(n-1)/2+5 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 3*n + a(n-1) - 3 with a(1)=5. - Vincenzo Librandi, Nov 28 2009
G.f.: x*(5 - 7*x + 5*x^2)/(1-x)^3. - Colin Barker, Jan 14 2012
3*(8*a(n) - 37) = A016945(n-1)^2. - Vincenzo Librandi, Feb 15 2012
From Elmo R. Oliveira, Feb 11 2025: (Start)
E.g.f.: exp(x)*(5 + 3*x^2/2) - 5.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
Extensions
More terms from Graham Roy (groy(AT)ashland.edu), Dec 14 2006
Additional comments from Christopher N. Swanson (cswanson(AT)ashland.edu), R. J. Mathar, Dec 14 2006
Comments