A124012 Decimal expansion of Sum_{k>=1} 1/(k*prime(k)).
8, 4, 8, 9, 6, 9, 0, 3, 4, 0, 4, 3
Offset: 0
Examples
0.848969034043... From _Jon E. Schoenfield_, Jan 14 2019: (Start) We can obtain prime(2^d) for d = 0..57 from the b-file for A033844. Given the above result from _Robert Price_, and letting j_RP = 596765000000, the partial sum through prime(j_RP) = 17581469834441 is s(j_RP) = Sum_{k=1..j_RP} 1/(k*prime(k)) = 0.848969034043245206069544346415327714...; adding to this actual partial sum s(j_RP) the approximate tail value t(j_RP) = h'(prime(j_RP), prime(2^40)) + (Sum_{d=41..57} h'(prime(2^(d-1)), prime(2^d))) + lim_{x->infinity} h(prime(2^57), x) (see the Links entry for an explanation) gives the result 0.84896903404330021273712255895762255... (which seems likely to be correct to at least 20 significant digits). The table below gives, for j = 2^16, 2^17, ..., 2^32, and j_RP, the actual partial sum s(j) and the sum s(j) + t(j) where t(j) is the approximate tail value beyond prime(j). . j s(j) s(j) + t(j) ==== ====================== ====================== 2^16 0.84896790758922908159 0.84896903393397518971 2^17 0.84896850050492294891 0.84896903400552099072 2^18 0.84896878057566843770 0.84896903404214147367 2^19 0.84896891330602605081 0.84896903404317536927 2^20 0.84896897639243509768 0.84896903404350431035 2^21 0.84896900645590169648 0.84896903404376063663 2^22 0.84896902081581006534 0.84896903404343742139 2^23 0.84896902768965496764 0.84896903404337393698 2^24 0.84896903098637626311 0.84896903404331189996 2^25 0.84896903257029535468 0.84896903404329806633 2^26 0.84896903333252861584 0.84896903404330030271 2^27 0.84896903369988697984 0.84896903404330084536 2^28 0.84896903387717904236 0.84896903404330042023 2^29 0.84896903396285181513 0.84896903404330024036 2^30 0.84896903400430044877 0.84896903404330021861 2^31 0.84896903402437548991 0.84896903404330021472 2^32 0.84896903403410856545 0.84896903404330021655 ... ... ... j_RP 0.84896903404324520607 0.84896903404330021274 (End)
Links
- Jon E. Schoenfield, Notes on approximating the size of the summation's tail beyond the j-th prime
- Eric Weisstein's World of Mathematics, Prime Number Theorem
Extensions
Offset and leading zero corrected by R. J. Mathar, Jan 31 2009
Four more terms (4,0,4,3) from Robert Price, Jul 14 2010
Title and example edited by M. F. Hasler, Jan 13 2015
Comments