cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124012 Decimal expansion of Sum_{k>=1} 1/(k*prime(k)).

Original entry on oeis.org

8, 4, 8, 9, 6, 9, 0, 3, 4, 0, 4, 3
Offset: 0

Views

Author

Pierre CAMI, Nov 02 2006

Keywords

Comments

From Robert Price, Jul 14 2010: (Start)
This series converges very slowly. I could not find any transform that converges faster, so I did this by brute force using 256 bits of precision.
After k=596765000000 terms (p(k)=17581469834441) the partial sum is 0.848 969 034 043 245 206 069 544 346 415 327 714...
The next two digits are either 29 or 30. (End)
The table in the Example section shows, for increasing values of j, the results of computing the partial sum s(j) = Sum_{k=1..j} 1/(k*prime(k)) and adding to it an approximate value for the tail (i.e., the sum for all the terms k > j). See the Links entry for an explanation of the method used in approximating the size of the tail of the summation beyond the j-th prime. - Jon E. Schoenfield, Jan 20 2019

Examples

			0.848969034043...
From _Jon E. Schoenfield_, Jan 14 2019: (Start)
We can obtain prime(2^d) for d = 0..57 from the b-file for A033844. Given the above result from _Robert Price_, and letting j_RP = 596765000000, the partial sum through
   prime(j_RP) = 17581469834441
is
   s(j_RP) = Sum_{k=1..j_RP} 1/(k*prime(k))
           = 0.848969034043245206069544346415327714...;
adding to this actual partial sum s(j_RP) the approximate tail value
   t(j_RP) =
         h'(prime(j_RP), prime(2^40))
       + (Sum_{d=41..57} h'(prime(2^(d-1)), prime(2^d)))
       + lim_{x->infinity} h(prime(2^57), x)
(see the Links entry for an explanation) gives the result 0.84896903404330021273712255895762255... (which seems likely to be correct to at least 20 significant digits).
The table below gives, for j = 2^16, 2^17, ..., 2^32, and j_RP, the actual partial sum s(j) and the sum s(j) + t(j) where t(j) is the approximate tail value beyond prime(j).
.
   j             s(j)                s(j) + t(j)
  ====  ======================  ======================
  2^16  0.84896790758922908159  0.84896903393397518971
  2^17  0.84896850050492294891  0.84896903400552099072
  2^18  0.84896878057566843770  0.84896903404214147367
  2^19  0.84896891330602605081  0.84896903404317536927
  2^20  0.84896897639243509768  0.84896903404350431035
  2^21  0.84896900645590169648  0.84896903404376063663
  2^22  0.84896902081581006534  0.84896903404343742139
  2^23  0.84896902768965496764  0.84896903404337393698
  2^24  0.84896903098637626311  0.84896903404331189996
  2^25  0.84896903257029535468  0.84896903404329806633
  2^26  0.84896903333252861584  0.84896903404330030271
  2^27  0.84896903369988697984  0.84896903404330084536
  2^28  0.84896903387717904236  0.84896903404330042023
  2^29  0.84896903396285181513  0.84896903404330024036
  2^30  0.84896903400430044877  0.84896903404330021861
  2^31  0.84896903402437548991  0.84896903404330021472
  2^32  0.84896903403410856545  0.84896903404330021655
  ...            ...                     ...
  j_RP  0.84896903404324520607  0.84896903404330021274
(End)
		

Crossrefs

Extensions

Offset and leading zero corrected by R. J. Mathar, Jan 31 2009
Four more terms (4,0,4,3) from Robert Price, Jul 14 2010
Title and example edited by M. F. Hasler, Jan 13 2015