A124038 Triangle read by rows: T(n, k) = T(n-1, k-1) - T(n-2, k), with T(n, n) = 1, T(n, n-1) = -2.
1, -2, 1, -1, -2, 1, 2, -2, -2, 1, 1, 4, -3, -2, 1, -2, 3, 6, -4, -2, 1, -1, -6, 6, 8, -5, -2, 1, 2, -4, -12, 10, 10, -6, -2, 1, 1, 8, -10, -20, 15, 12, -7, -2, 1, -2, 5, 20, -20, -30, 21, 14, -8, -2, 1, -1, -10, 15, 40, -35, -42, 28, 16, -9, -2, 1
Offset: 0
Examples
Triangular sequence begins as: 1; -2, 1; -1, -2, 1; 2, -2, -2, 1; 1, 4, -3, -2, 1; -2, 3, 6, -4, -2, 1; -1, -6, 6, 8, -5, -2, 1; 2, -4, -12, 10, 10, -6, -2, 1; 1, 8, -10, -20, 15, 12, -7, -2, 1; -2, 5, 20, -20, -30, 21, 14, -8, -2, 1; -1, -10, 15, 40, -35, -42, 28, 16, -9, -2, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
function T(n,k) // T = A124038 if k lt 0 or k gt n then return 0; elif k ge n-2 then return k-n + (-1)^(n+k); else return T(n-1,k-1) - T(n-2,k); end if; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 22 2025
-
Mathematica
(* First program *) t[n_, m_, d_]:= If[n==m && n>1 && m>1, x, If[n==m-1 || n==m+1, -1, If[n==m== 1, x-2, 0]]]; M[d_]:= Table[t[n,m,d], {n,d}, {m,d}]; Join[{{1}}, Table[CoefficientList[Table[Det[M[d]], {d,10}][[d]], x], {d,10}]]//Flatten (* Second program *) T[n_, k_]:= T[n, k] = If[k<0 || k>n, 0, If[k>n-2, k-n+(-1)^(n-k), T[n-1, k- 1] -T[n-2,k]]]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 22 2025 *)
-
SageMath
@CachedFunction def A124038(n,k): if n< 0: return 0 if n==0: return 1 if k == 0 else 0 h = 2*A124038(n-1,k) if n==1 else 0 return A124038(n-1,k-1) - A124038(n-2,k) - h for n in (0..9): [A124038(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
-
SageMath
from sage.combinat.q_analogues import q_stirling_number2 def A124038(n,k): return (1 + ((n-k)%2))*q_stirling_number2(n+1, n-k+1, -1) print(flatten([[A124038(n, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 22 2025
Formula
From G. C. Greubel, Jan 22 2025: (Start)
T(n, k) = T(n-1, k-1) - T(n-2, k), with T(n, n) = 1, T(n, n-1) = -2.
T(n, k) = (-1)^floor((n-k+1)/2)*(1 + (n-k mod 2))*qStirling2(n+1, n-k+1,-1).
Extensions
Edited by G. C. Greubel, Jan 22 2025