A124049 a(n) = c is least number such that 10^n/2 -/+ c are primes.
0, 3, 9, 81, 123, 57, 87, 243, 69, 63, 189, 231, 1569, 381, 231, 1443, 1113, 321, 339, 1353, 363, 519, 1323, 1503, 741, 1221, 957, 1053, 339, 5931, 2121, 2301, 2031, 4773, 4737, 10281, 1317, 129, 3873, 1443, 387, 11769, 8271, 5337, 2883, 7137, 8193, 8493
Offset: 1
Keywords
Examples
Next terms up to n = 101: 14637, 9897, 6471, 183, 8043, 6921,6699, 29127, 3663, 12537, 3777, 6741, 2253, 561, 3783, 26979, 16491, 6543, 10683, 1749, 6417, 38871, 22767, 62403, 8631, 4497, 20739, 453, 16731, 25293, 4341, 37467, 55323,4587,37083,24717,6687,8763,22551,29367,37881,14301,8637,34101,22179,26811,7059,1647
Programs
-
Mathematica
lnc[n_]:=Module[{c=0,t=10^n/2},While[!AllTrue[t+{c,-c},PrimeQ],c++];c]; Array[ lnc,50] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 21 2014 *)
Comments