cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124053 Numbers n that can be expressed as the sum of the digits of both m^k and k^m for distinct numbers m and k which are not both equal to powers of 10.

Original entry on oeis.org

7, 18, 45, 61, 72, 85, 90, 145, 270, 306, 315, 367, 376, 448, 477, 540, 547, 585, 667, 733, 756, 765, 943, 1152, 1377, 1899, 1971, 2106, 2133, 2155, 2215, 2224, 2349, 2628, 2822, 2871, 2968, 3123, 3139, 3181, 3204, 3355, 3546, 3553, 3775, 3780, 4131, 4455
Offset: 1

Views

Author

Paolo P. Lava and Giorgio Balzarotti, Nov 03 2006, Nov 29 2006

Keywords

Comments

If "sumdigit" denotes the sum of the digits of a number then these are the numbers n such that n=sumdigit(m^k)=sumdigit(k^m).
Two banal cases are not considered: 1) m=k because m^k=k^m and the sum of the digits is automatically equal for both the numbers; 2) powers of 10 because sumdigit(10^a)=1 for any integer a. The same number can be generated by different pairs: 477 cames from sumdigit(54^63)=sumdigit(63^54) and sumdigit(90^120)=sumdigit(120^90) 2349 cames from sumdigit(216^222)=sumdigit(222^216), sumdigit(216^225)=sumdigit(225^216) and sumdigit(219^222)=sumdigit(222^219)

Examples

			270 = sumdigit(36^39) = sumdigit(39^36);
1152 = sumdigit(114^126) = sumdigit(126^114);
2133 = sumdigit(204^213) = sumdigit(213^204).
		

Crossrefs

Programs

  • Maple
    P:=proc(n)local i,j,k,w,x,y; for i from 1 by 1 to n do for j from 1 by 1 to n do w:=0; x:=0; k:=i^j; y:=j^i; while k>0 do w:=w+k-trunc(k/10)*10; k:=trunc(k/10); od; while y>0 do x:=x+y-trunc(y/10)*10; y:=trunc(y/10); od; if (w=x) and (w<>1) and (i