cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A125526 Numbers k for which the sum of the digits of k raised to the sum of the digits of k itself is equal to k. If "sumdigit" denotes the sum of the digits of a number then these are the numbers k such that k = sumdigit(k^sumdigit(k)).

Original entry on oeis.org

1, 22, 34, 43, 54, 81, 82, 169, 187
Offset: 1

Views

Author

Keywords

Comments

There are no other terms. Proof: Assume the next term has d digits. 10^d > k >= 10^(d-1); sumdigit(k) >= 9d; k^sumdigit(k) < (10^d)^(9d) < 10^(9d^2); 9*(9d^2+1) > sumdigit(k^sumdigit(k)); 9*(9d^2+1) > k 9*(9d^2+1) > 10^(d-1). So d < 5. - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Mar 11 2007

Examples

			a(2)=22 because 2 + 2 = 4, 22^4 = 234256, 2 + 3 + 4 + 2 + 5 + 6 = 22.
		

Crossrefs

Programs

  • Maple
    P:=proc(n) local i,j,k,w; for i from 1 by 1 to n do w:=0; k:=i; while k>0 do w:=w+k-trunc(k/10)*10; k:=trunc(k/10); od; k:=i^w; w:=0; while k>0 do w:=w+k-trunc(k/10)*10; k:=trunc(k/10); od; if (i=w) then print(w); fi; od; end: P(200);
    sod := proc(n,b) convert(convert(n,base,b),`+`) end; b:=10: L:=[]: for w to 1 do for n from 1 to 10^3 do x:=sod(n^sod(n,b),b); if x=n then print(n); L:=[op(L),n]; fi; od od; L; # Walter Kehowski, Feb 12 2007
    sd:=proc(n) local nn: nn:=convert(n,base,10): sum(nn[j],j=1..nops(nn)) end: a:=proc(n) if sd(n^sd(n))=n then n else fi end: seq(a(n),n=1..500); # Emeric Deutsch, Feb 16 2007
  • Mathematica
    Select[Range[200],Total[IntegerDigits[#^Total[IntegerDigits[#]]]]==#&] (* Harvey P. Dale, Jul 26 2019 *)
Showing 1-1 of 1 results.