cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124123 Primes not of the form nextprime(f(p)) with p prime, where f(p)=p/2 if p=2 (mod 3), f(p)=2p otherwise (cf. A138750).

Original entry on oeis.org

5, 19, 61, 73, 83, 103, 107, 109, 113, 139, 151, 167, 173, 191, 199, 229, 269, 271, 277, 313, 337, 349, 359, 379, 397, 439, 463, 503, 523, 563, 571, 601, 607, 619, 733, 773, 823, 827, 829, 859, 883, 887, 911, 971, 983, 997, 1013, 1031, 1063, 1091, 1093, 1103
Offset: 1

Views

Author

Jacques Tramu, Dec 13 2006

Keywords

Comments

These are the primes which cannot be part of a gb-sequence (except as seed).
Is this sequence finite or infinite?
From M. F. Hasler, Mar 27 2008: (Start)
The last comment above probably refers not to this sequence but to the "gb-sequences" themselves, e.g., the one starting with 4499221 which reaches a peak of approximately 10^110, cf. Formula and Links.
The function f(p)=p/2 if p == 2 (mod 3), f(p)=2p otherwise, yields a half-integer for primes p=6k-1 and an even number for primes p=6k+1; in all cases nextprime(f(p)) is defined without ambiguity: f(p) will never be equal to a prime.
This sequence lists primes p' not in the range of the map p -> nextprime(f(p)), defined on the primes.
Equivalently, p' is listed iff: (i) no even number between p' and the next lower prime is of the form 2p with p=0 or p == 1 (mod 3), AND (ii) no half-integer between p' and the next lower prime is of the form p/2 with p == 2 (mod 3) and p prime (in both conditions).
This characterization allows easy computation of the sequence, cf. PARI code.
Experimentally, it does not appear that this sequence is finite. Instead, its (local) density within the primes seems to increase, from roughly 25% for the first terms to about 50% at 10^30. (End)
The function f is discussed in A138750. Composed with the nextprime function and restricted to the primes (cf. A138751), it yields a ("natural") variant of the Collatz function on the set of the primes, with (mod 2) replaced by (mod 3). The gb-sequences are the orbits under that function. - M. F. Hasler, Nov 18 2018

Examples

			Example: a(1) = 5 because there is no prime gb(n) such that gb(n+1) = 5.
		

References

  • Communication paper by Georges Brougnard.

Crossrefs

Cf. A007918 (nextprime), A138750 (function f), A138751, A138752, A138753, A138754.

Programs

  • Mathematica
    lim = PrimePi[1000]; f[p_ /; Mod[p, 3] == 2] := p/2; f[p_] := 2*p; Complement[Prime[Range[lim]], Table[ NextPrime[ f[Prime[k]]], {k, 1, 2*lim}]] (* Jean-François Alcover, Sep 20 2011 *)
  • PARI
    {forprime( p=3,10^3, for( i=precprime(p-1)+1,p, (2*i)%3==0 & isprime(2*i-1) & next(2); i%2==0 & ( i/2 )%3!=2 & isprime( i/2 ) & next(2)); print1( p", " ))}
    nextA124123(p)={ while( p=nextprime(p+1), for( i=precprime(p-1)+1,p, (2*i)%3==0 & isprime(2*i-1) & next(2); i%2==0 & ( i/2 )%3!=2 & isprime( i/2 ) & next(2)); return( p )) }
    t=2;vector(200,i,t=nextA124123(t)) \\ 60% of the first 200 terms are in 1+3Z:
    t=[0,0];vector(#%,i,t[%[i]%3]++);t \\ yields [120, 80]
    t=10^11;vector(200,i,t=nextA124123(t)) \\ exactly 50% of these terms are in 1+3Z:
    t=[0,0];vector(#%,i,t[%[i]%3]++);t \\ yields [100, 100]
    t=10^30;vector(200,i,t=nextA124123(t+1));t-10^30 \\ yields 31773 = distance of 200th term beyond 10^30
    t=10^30;vector(200,i,t=nextprime(t+1));(t-1e30)/% \\ yields 0.52..., approx. local density in the primes. (End)

Formula

Complement of A007918(A138750(A000040)) = nextprime(f({primes})).
Recurrence for a gb-sequence starting with gb(0) = a prime > 2 (the seed):
| If gb(n) = 2 (mod 3) then gb(n+1) := least prime > gb(n)/2;
| otherwise gb(n+1) := least prime > gb(n)*2.
A gb-sequence of length L ends in the loop 7, 17, 11, 7, ... ; gb(L-1) = 7.

Extensions

Edited by M. F. Hasler, Mar 27 2008, Nov 18 2018