A124132 Positive integers n such that Fibonacci(2*n) is the sum of two squares.
1, 3, 6, 7, 13, 19, 31, 37, 43, 49, 61, 67, 73, 79, 91, 111, 127, 163, 169, 183, 199, 223, 307, 313, 349, 361, 397, 433, 511, 523, 541, 613, 619, 709, 823, 907, 1087, 1123, 1129, 1147, 1213, 1279
Offset: 1
Examples
a(4) = 7 because the first four Fibonacci numbers with even indices that are the sum of two squares are F_2, F_6, F_12 and F_14, 14 being 2*a(4) and F_14 = 377 = 11^2+16^2.
Links
- Christian Ballot and Florian Luca, On the equation x^2+dy^2-F_n, Acta Arithmetica, 2 (2007), 145-155.
- Blair Kelly, Fibonacci and Lucas factorizations
- Wikipedia, Cornacchia's algorithm
Programs
-
Mathematica
Select[Range[100], Length[FindInstance[x^2 + y^2 == Fibonacci[2 #], {x, y}, Integers]] > 0 &] (* T. D. Noe, Aug 27 2012 *)
-
PARI
for(i=2, 500, a=factorint(fibonacci(i))~; has=0; for(j=1, #a, if(a[1, j]%4==3&&a[2, j]%2==1, has=1; break)); if(has==0&&i%2==0, print((i/2)", "))) \\ V. Raman, Aug 27 2012
-
Python
from itertools import count, islice from sympy import factorint, fibonacci def A124132_gen(): # generator of terms return filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(fibonacci(2*n)).items()),count(1)) A124132_list = list(islice(A124132_gen(),10)) # Chai Wah Wu, Jun 27 2022
Extensions
a(22)-a(38) from V. Raman, Aug 27 2012
a(39)-a(42) from Chai Wah Wu, Jul 22 2020
Comments