A124134 Positive integers n such that Fibonacci(n) = a^2 + b^2, where a, b are integers.
1, 2, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 19, 21, 23, 25, 26, 27, 29, 31, 33, 35, 37, 38, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 62, 63, 65, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 85, 86, 87, 89, 91, 93, 95, 97, 98, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 122, 123, 125, 127
Offset: 1
Keywords
Examples
14 is in the sequence because F_14=377=11^2+16^2. 16 is not in the sequence because F_16=987 is congruent to 3 (mod 4).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..1322 (terms 1..210 from Joerg Arndt)
Programs
-
Haskell
a124134 n = a124134_list !! (n-1) a124134_list = filter ((> 0) . a000161 . a000045) [1..] -- Reinhard Zumkeller, Oct 10 2013
-
Mathematica
Select[Range@ 128, SquaresR[2, Fibonacci@ #] > 0 &] (* Michael De Vlieger, May 04 2016 *)
-
PARI
for(n=1, 10^6, t=fibonacci(n); s=sqrtint(t); forstep(i=s, 1, -1, if(issquare(t-i*i), print1(n, ", "); break))) \\ Ralf Stephan, Sep 15 2013
-
PARI
is2s(n)={my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]%2 && f[i, 1]%4==3, return(0))); 1; } \\ see A001481 for(n=1, 10^6, if(is2s(fibonacci(n)), print1(n, ", "))); \\ Joerg Arndt, Sep 15 2013
-
Python
from itertools import count, islice from sympy import factorint, fibonacci def A124134_gen(): # generator of terms return filter(lambda n:n & 1 or all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(fibonacci(n)).items()),count(1)) A124134_list = list(islice(A124134_gen(),30)) # Chai Wah Wu, Jun 27 2022
Formula
Extensions
More terms from Ralf Stephan, Sep 15 2013
Comments