cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A356809 Fibonacci numbers which are not the sum of two squares.

Original entry on oeis.org

3, 21, 55, 987, 2584, 6765, 17711, 46368, 317811, 832040, 2178309, 5702887, 14930352, 102334155, 267914296, 701408733, 1836311903, 4807526976, 12586269025, 32951280099, 86267571272, 225851433717, 591286729879, 1548008755920, 10610209857723
Offset: 1

Views

Author

Ctibor O. Zizka, Aug 29 2022

Keywords

Examples

			F(4) = 3; 3 != x^2 + y^2 as no positive integers x, y >= 0 are the solution of this Diophantine equation.
		

Crossrefs

Intersection of A000045 and A022544.

Programs

  • Mathematica
    Select[Fibonacci[Range[65]], SquaresR[2, #] == 0 &] (* Amiram Eldar, Aug 29 2022 *)
  • PARI
    is(n)=if(n%4==3, return(1)); my(f=factor(n)); for(i=1, #f~, if(f[i, 1]%4==3 && f[i, 2]%2, return(1))); 0; \\ A022544
    lista(nn) = select(is, apply(fibonacci, [1..nn])); \\ Michel Marcus, Sep 04 2022
    
  • Python
    from itertools import islice
    from sympy import factorint
    def A356809_gen(): # generator of terms
        a, b = 1, 2
        while True:
            if any(p&3==3 and e&1 for p, e in factorint(a).items()):
                yield a
            a, b = b, a+b
    A356809_list = list(islice(A356809_gen(),30)) # Chai Wah Wu, Jan 10 2023

A229139 Smallest m such that Fibonacci(2n-1) = m^2 + k^2.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 9, 21, 34, 55, 89, 73, 13, 377, 610, 987, 64, 244, 4155, 4554, 10946, 2191, 28657, 15857, 74957, 34022, 29811, 50481, 134104, 832040, 162589, 387938, 711703, 1556305, 6229800, 4173137, 4059539, 1972951, 51797450, 4866315, 165580141, 46049477, 202620393, 348451533, 181781990
Offset: 1

Views

Author

Ralf Stephan, Sep 15 2013

Keywords

Comments

Every odd-indexed Fibonacci number (A000045) is a sum of two squares (see A124134).
Which of the a(n) are not Fibonacci numbers?

Examples

			A000045(2*6-1) = 89 = 5^2 + 8^2 so a(6)=5.
A000045(2*8-1) = 610 = 9^2 + 23^2 = 13^2 + 21^2, so a(8)=9.
		

Crossrefs

Programs

  • Haskell
    a229139 1 = 0
    a229139 n = head $
       dropWhile (== 0) $ map (a037213 . (t -) . (^ 2)) [s, s - 1 ..]
       where t = a000045 (2 * n - 1); s = a000196 t
    -- Reinhard Zumkeller, Oct 11 2013
  • PARI
    for(n=1, 10^6, t=fibonacci(2*n-1);s=sqrtint(t);forstep(i=s,1,-1,if(issquare(t-i*i),print1(sqrtint(t-i*i), ",");break)))
    
Showing 1-2 of 2 results.