A124136
The list of primes p such that the number of primes in the open interval (p,2*p) is larger than the number of primes in the open interval (q,2*q) for all q
2, 7, 11, 17, 23, 29, 31, 37, 53, 59, 71, 79, 89, 97, 101, 127, 137, 149, 157, 179, 191, 211, 223, 233, 251, 257, 263, 293, 307, 311, 331, 347, 367, 373, 379, 389, 409, 419, 431, 443, 457, 479, 487, 499, 521, 541, 547, 557, 563, 587, 599, 613, 617, 631, 641
Offset: 1
Keywords
Examples
a(1)=prime(1)=2 with 1 prime in the interval (2,4). a(2) is neither 3 (with 1 prime in the interval (3,6)), nor 5 (with 1 prime in the interval (5,10)), but a(2)=7 with 2 primes in the interval (7,14). The primes 41, 43 and 47 are not in the list because the intervals (41,82), (43,86) and (47,94) contain 9 primes, but the interval (37,74) with the smaller prime p=37 already contained 9 primes. The prime 53 is in the list because the interval (53,106) contains 11 primes and the intervals (q,2*q) for primes q =2,3, 5, ..,47 contained 9 or less primes.
Programs
-
Maple
ts_c:=proc(n) local i,j,st_p,max_stp,ans; ans:= [ ]: st_p:=0: max_stp:=0: for i from 2 to n do for j from i+1 to 2*i-1 do if (isprime(j) = 'true') then st_p:=st_p+1: fi od: if (st_p > max_stp and isprime(i) = 'true') then max_stp := st_p: ans:=[ op(ans),i ]: fi; st_p:=0: od: RETURN(ans) end: ts_c(1200);
Extensions
Definition recovered from the Maple program. - R. J. Mathar, May 21 2025
Comments