cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124143 Perfect powers pp such that sigma(k) = pp for some positive integer k.

Original entry on oeis.org

4, 8, 32, 36, 121, 128, 144, 216, 256, 324, 400, 512, 576, 784, 900, 961, 1024, 1296, 1600, 1728, 1764, 1936, 2304, 2704, 2744, 2916, 3136, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5776, 5832, 6084, 6400, 7056, 7744, 7776, 8000, 8100, 8192, 9216, 9604
Offset: 1

Views

Author

Walter Kehowski, Dec 01 2006

Keywords

Examples

			a(1) = 4 since sigma(3) = 4 = 2^2.
		

Crossrefs

Intersection of A001597 and A002191 \ {1}.
Cf. A065496.

Programs

  • Magma
    Set(Sort([SumOfDivisors(k): k in[1..10000], b in [2..15], a in [2..100] | SumOfDivisors(k) eq a^b])); // Jaroslav Krizek, Mar 10 2015
    
  • Magma
    Set(Sort([SumOfDivisors(k): k in[A065496(n)]])); // Jaroslav Krizek, Mar 10 2015
    
  • Maple
    with(numtheory); egcd := proc(n) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z->z[2],L); return igcd(op(L)) else return 1 fi; end; L:=[]: P:={}: for w to 1 do for n from 1 to 10000 do s:=sigma(n); if egcd(s)>1 then print(n,s,ifactor(s)); L:=[op(L),n]; P:=P union {s}; fi od od; L; P;
  • Mathematica
    powerQ[n_] := Block[{pf = FactorInteger@ n, min}, min = Min @@ Last /@ pf; min > 1 && AllTrue[Last /@ pf/min, IntegerQ]]; lim = 10000; Intersection[Select[Range@ lim, powerQ], DeleteDuplicates@ Sort[DivisorSigma[1, #] & /@ Range@ lim]] (* Michael De Vlieger, Mar 10 2015 *)
  • PARI
    is(n) = ispower(n) && invsigmaNum(n) > 0; \\ Amiram Eldar, Aug 02 2024, using Max Alekseyev's invphi.gp