A124143 Perfect powers pp such that sigma(k) = pp for some positive integer k.
4, 8, 32, 36, 121, 128, 144, 216, 256, 324, 400, 512, 576, 784, 900, 961, 1024, 1296, 1600, 1728, 1764, 1936, 2304, 2704, 2744, 2916, 3136, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5776, 5832, 6084, 6400, 7056, 7744, 7776, 8000, 8100, 8192, 9216, 9604
Offset: 1
Keywords
Examples
a(1) = 4 since sigma(3) = 4 = 2^2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems: Inversion of Multiplicative Functions (invphi.gp).
Programs
-
Magma
Set(Sort([SumOfDivisors(k): k in[1..10000], b in [2..15], a in [2..100] | SumOfDivisors(k) eq a^b])); // Jaroslav Krizek, Mar 10 2015
-
Magma
Set(Sort([SumOfDivisors(k): k in[A065496(n)]])); // Jaroslav Krizek, Mar 10 2015
-
Maple
with(numtheory); egcd := proc(n) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z->z[2],L); return igcd(op(L)) else return 1 fi; end; L:=[]: P:={}: for w to 1 do for n from 1 to 10000 do s:=sigma(n); if egcd(s)>1 then print(n,s,ifactor(s)); L:=[op(L),n]; P:=P union {s}; fi od od; L; P;
-
Mathematica
powerQ[n_] := Block[{pf = FactorInteger@ n, min}, min = Min @@ Last /@ pf; min > 1 && AllTrue[Last /@ pf/min, IntegerQ]]; lim = 10000; Intersection[Select[Range@ lim, powerQ], DeleteDuplicates@ Sort[DivisorSigma[1, #] & /@ Range@ lim]] (* Michael De Vlieger, Mar 10 2015 *)
-
PARI
is(n) = ispower(n) && invsigmaNum(n) > 0; \\ Amiram Eldar, Aug 02 2024, using Max Alekseyev's invphi.gp