cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124152 a(n) = Fibonacci(6, n).

Original entry on oeis.org

0, 8, 70, 360, 1292, 3640, 8658, 18200, 34840, 61992, 104030, 166408, 255780, 380120, 548842, 772920, 1065008, 1439560, 1912950, 2503592, 3232060, 4121208, 5196290, 6485080, 8017992, 9828200, 11951758, 14427720, 17298260, 20608792, 24408090, 28748408
Offset: 0

Views

Author

Zerinvary Lajos, Dec 01 2006

Keywords

Crossrefs

Cf. A117715 formatted as a triangular array: row 7.
Cf. A000045.

Programs

  • Maple
    with(combinat, fibonacci):seq(fibonacci(6, i), i=0..35);
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,8,70,360,1292,3640},40] (* Harvey P. Dale, Apr 18 2019 *)
  • PARI
    concat(0, Vec(2*x*(4 + 11*x + 30*x^2 + 11*x^3 + 4*x^4) / (1 - x)^6 + O(x^30))) \\ Colin Barker, Apr 06 2017
  • Sage
    [lucas_number1(6,n,-1) for n in range(0, 30)] # Zerinvary Lajos, May 16 2009
    

Formula

From Colin Barker, Apr 06 2017: (Start)
G.f.: 2*x*(4 + 11*x + 30*x^2 + 11*x^3 + 4*x^4) / (1 - x)^6.
a(n) = n*(3 + 4*n^2 + n^4).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)