A124175 Decimal expansion of Product_{primes p} ((p-1)/p)^(1/p).
5, 5, 9, 8, 6, 5, 6, 1, 6, 9, 3, 2, 3, 7, 3, 4, 8, 5, 7, 2, 3, 7, 6, 2, 2, 4, 4, 2, 2, 3, 4, 1, 6, 7, 1, 7, 2, 5, 7, 6, 6, 6, 3, 7, 0, 2, 1, 2, 9, 0, 6, 0, 3, 9, 5, 5, 4, 2, 3, 3, 9, 3, 3, 9, 3, 5, 2, 0, 3, 1, 7, 1, 7, 9, 7, 5, 9, 1, 5, 9, 3, 6, 2, 7, 6, 5, 4, 0, 9, 5, 0, 6, 3, 0, 6, 6, 5, 4, 7
Offset: 0
Examples
0.5598656169323734857237622442234167172576663702129060395542339339\ 352031717975915936276540950630665470795373094197373037280781542375...
Links
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 164.
- Mathoverflow, Asymptotics of product of Euler's totient function, 2016.
- Eric Weisstein's World of Mathematics, Prime Zeta Function
Programs
-
Mathematica
digits = 100; s = Exp[-NSum[PrimeZetaP[h+1]/h, {h, 1, Infinity}, WorkingPrecision -> digits+5, NSumTerms -> 3 digits]]; RealDigits[s, 10, digits][[1]] (* Jean-François Alcover, Dec 07 2015, after Robert Gerbicz *)
-
PARI
default(realprecision,256);(f(k)=return(sum(n=1,512,moebius(n)/n*log(zeta(k*n)))));exp(sum(h=1,512,-1/h*f(h+1))) /* Robert Gerbicz */
-
PARI
exp(-suminf(m=2,log(zeta(m))*sumdiv(m,k,if(k
Martin Fuller */
Formula
exp(-suminf(h=1, primezeta(h+1)/h)). - Robert Gerbicz
[Notation not clear. Is this perhaps exp(-Sum_{h=1..oo} primezeta(h+1)/h) ? - N. J. A. Sloane, Oct 08 2017]
Equals exp(1) * lim_{n->infinity} (A001088(n)/n!)^(1/n). - Vaclav Kotesovec, Feb 05 2016
Extensions
Robert Gerbicz computed this to 130 decimal places.
Comments