cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124175 Decimal expansion of Product_{primes p} ((p-1)/p)^(1/p).

Original entry on oeis.org

5, 5, 9, 8, 6, 5, 6, 1, 6, 9, 3, 2, 3, 7, 3, 4, 8, 5, 7, 2, 3, 7, 6, 2, 2, 4, 4, 2, 2, 3, 4, 1, 6, 7, 1, 7, 2, 5, 7, 6, 6, 6, 3, 7, 0, 2, 1, 2, 9, 0, 6, 0, 3, 9, 5, 5, 4, 2, 3, 3, 9, 3, 3, 9, 3, 5, 2, 0, 3, 1, 7, 1, 7, 9, 7, 5, 9, 1, 5, 9, 3, 6, 2, 7, 6, 5, 4, 0, 9, 5, 0, 6, 3, 0, 6, 6, 5, 4, 7
Offset: 0

Views

Author

David W. Wilson, Dec 05 2006

Keywords

Comments

This might be interpreted as the expected value of phi(n)/n for very large n.

Examples

			0.5598656169323734857237622442234167172576663702129060395542339339\
352031717975915936276540950630665470795373094197373037280781542375...
		

Crossrefs

Programs

  • Mathematica
    digits = 100; s = Exp[-NSum[PrimeZetaP[h+1]/h, {h, 1, Infinity}, WorkingPrecision -> digits+5, NSumTerms -> 3 digits]]; RealDigits[s, 10, digits][[1]] (* Jean-François Alcover, Dec 07 2015, after Robert Gerbicz *)
  • PARI
    default(realprecision,256);(f(k)=return(sum(n=1,512,moebius(n)/n*log(zeta(k*n)))));exp(sum(h=1,512,-1/h*f(h+1))) /* Robert Gerbicz */
    
  • PARI
    exp(-suminf(m=2,log(zeta(m))*sumdiv(m,k,if(kMartin Fuller */

Formula

exp(-suminf(h=1, primezeta(h+1)/h)). - Robert Gerbicz
[Notation not clear. Is this perhaps exp(-Sum_{h=1..oo} primezeta(h+1)/h) ? - N. J. A. Sloane, Oct 08 2017]
Equals exp(1) * lim_{n->infinity} (A001088(n)/n!)^(1/n). - Vaclav Kotesovec, Feb 05 2016

Extensions

Robert Gerbicz computed this to 130 decimal places.