A124199 Primes of the form k(k+1)/2-2 (i.e., two less than triangular numbers).
13, 19, 43, 53, 89, 103, 151, 229, 251, 349, 433, 463, 593, 701, 739, 859, 1033, 1223, 1429, 1483, 1709, 1889, 1951, 2143, 2699, 3001, 3079, 3319, 3739, 4003, 4093, 4463, 4751, 5563, 5669, 6553, 7019, 7873, 8513, 9043, 10009, 10151, 10729, 11173, 11779
Offset: 1
Examples
The (first five triangular numbers)-2 are: -1,1,4,8,13. So a(1)=13 is the first prime of this form.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..2000.
Crossrefs
Cf. A055472.
Programs
-
Mathematica
Pick[ #1, PrimeQ[ #1]]&[((1/2)*#1*(#1 + 1) - 2 & ) /@ Range[180]] Select[Accumulate[Range[250]]-2,PrimeQ] (* Harvey P. Dale, Jun 07 2020 *)
-
PARI
isok(p) = isprime(p) && ispolygonal(p+2, 3); \\ Michel Marcus, Sep 19 2022
-
Python
import sympy [n*(n+1)/2-2 for n in range(10**6) if isprime(n*(n+1)/2-2)] # Chai Wah Wu, Jul 14 2014
Comments