cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124266 Variant sequence generated by solving the order n X n linear problem [H]x = b where b is the unit vector and the sequence term is given by the denominator of the last unknown xn.

Original entry on oeis.org

1, 1, 1, 3, 6, 10, 150, 525, 980, 24696, 740880, 2910600, 82328400, 168185160, 1870592724
Offset: 1

Views

Author

L. Van Warren (van(AT)wdv.com), Oct 23 2006

Keywords

Programs

  • Maxima
    HilbertWarren(fun, order) := ( Unity[i,j] := 1, A : genmatrix(fun, order, order), B : genmatrix(Unity, 1, order), App : invert(triangularize(A)), Xp : App . B, 1/Xp[order] ); findWarrenSequenceTerms(fun, a, b) := ( L : append(), for order: a next order+1 thru b do L: cons(first(HilbertWarren(fun,order)), L), S : reverse(L) ); k : 15; hilbert[i,j] := 1/(i + j - 1); findWarrenSequenceTerms(hilbert, 1, k); hilbertA0[i,j] := (i + j + 0)/(i + j - 1); /* sum 1 */ findWarrenSequenceTerms(hilbertA0, 1, k); hilbertA1[i,j] := (i + j + 1)/(i + j - 1); /* sum 2: there are lots of these, increment numerator */ findWarrenSequenceTerms(hilbertA1, 1, k); hilbertD1[i,j] := (i - j + 1)/(i + j - 1); /* difference 1 */ findWarrenSequenceTerms(hilbertD1, 1, k); hilbertP1[i,j] := (i * j + 0)/(i + j - 1); /* product 1 */ findWarrenSequenceTerms(hilbertP1, 1, k); hilbertQ1[i,j] := (i / j)/(i + j - 1); /* quotient 1 */ findWarrenSequenceTerms(hilbertQ1, 1, k); /* Program does not display the correct sequence. Robert C. Lyons, Jul 30 2025 */

Formula

[H] is defined by hilbertWarrenA1[i,j]:=(1-j+i)/(-1+j+i) where numbering starts at 1.