cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124270 a(n) = prime(A014612(n)) - A014612(prime(n)). Commutator [A000040,A014612] at n.

Original entry on oeis.org

7, 19, 34, 41, 53, 44, 38, 103, 91, 73, 99, 75, 135, 142, 147, 118, 133, 125, 118, 193, 229, 191, 212, 202, 197, 201, 216, 213, 248, 239, 209, 248, 279, 279, 277, 277, 333, 325, 350, 327, 299, 308, 264, 309, 314, 322, 297, 281, 363, 374, 461, 488, 484, 482
Offset: 1

Views

Author

Jonathan Vos Post, Oct 23 2006

Keywords

Examples

			a(1) = prime(3almostprime(1)) - 3almostprime(prime(1)) = prime(8) - 3almostprime(2) = 19 - 12 = 7.
a(2) = prime(3almostprime(2)) - 3almostprime(prime(2)) = prime(12) - 3almostprime(3) = 37 - 18 = 19.
a(3) = prime(3almostprime(3)) - 3almostprime(prime(3)) = prime(18) - 3almostprime(5) = 61 - 27 = 34.
		

Crossrefs

Cf. A000040 (primes), A014612 (3-almost primes).
Cf. A124268 (prime(3-almost prime(n))), A124269 (3-almost prime(prime(n))).
Cf. A106349 (prime(semiprime(n))), A106350 (semiprime(prime(n))), A122824 (prime(semiprime(n)) - semiprime(prime(n))).

Programs

  • PARI
    lista(nn) = {p = primes(nn); pp = select(x->bigomega(x)==3, vector(nn, n, n)); for (n=1, nn, print1(p[pp[n]] - pp[p[n]], ", "););} \\ Michel Marcus, Oct 15 2014

Formula

a(n) = A000040(A014612(n)) - A014612(A000040(n)).
a(n) = A124268(n) - A124269(n).