cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A124271 a(n) = Sum_{i=1..n} (prime(i)^n - 1)/(prime(i) - 1).

Original entry on oeis.org

1, 7, 51, 611, 19839, 603331, 32981935, 1469991559, 108336139407, 17389027481287, 1334783150250945, 222909199163881075, 31099653342061054699, 2994181661163361882651, 387134597481460117602345, 92092112661138292186297999, 26679920606217066273305101055
Offset: 1

Views

Author

Alexander Adamchuk, Oct 23 2006

Keywords

Crossrefs

Cf. A124272 (prime terms of this sequence), A124273 (primes p that divide a(p)), A124274 (nonprimes n that divide a(n)).
Similar sequence: A123855. See also A123856.

Programs

  • Magma
    [&+[(NthPrime(k)^n - 1) div (NthPrime(k) - 1): k in [1..n]]: n in [1..20]]; // Vincenzo Librandi, Oct 21 2018
  • Mathematica
    Table[Sum[(Prime[i]^n-1)/(Prime[i]-1),{i,1,n}],{n,1,20}]
  • PARI
    a(n) = sum(i=1, n, (prime(i)^n - 1)/(prime(i) - 1)) \\ Jianing Song, Oct 20 2018
    

A124273 Primes p that divide A124271(p) = Sum_{i=1..p} (prime(i)^p - 1) / (prime(i) - 1).

Original entry on oeis.org

3, 7, 13, 17, 19, 31, 47, 59, 61, 71, 101, 103, 107, 109, 137, 149, 151, 157, 167, 197, 211, 223, 227, 229, 269, 317, 337, 349, 353, 379, 383, 389, 401, 421, 439, 449, 457, 463, 479, 521, 523, 541, 547, 563, 569, 571, 587, 599, 613, 617, 631, 643, 647, 677
Offset: 1

Views

Author

Alexander Adamchuk, Oct 23 2006

Keywords

Comments

a(n) almost coincides with A123856(n). Up to 1000 there are only 3 terms of A123856(n) that are different from the terms of a(n), see A124275.

Crossrefs

Cf. A123856, A124271, A124274 (nonprimes n that divide A124271(n)), A124275 (terms of A123856 that are not in this sequence).

Programs

  • Maple
    A124271_mod:=proc(n) option remember; local s,i,p; s:=0: for i to n do p:=ithprime(i) mod n: if p<>1 then s:=s+(p&^n - 1)/(p - 1) mod p fi od:s end; A124273 := proc(n::posint) option remember; local p; if n>1 then p:=nextprime( procname(n-1)) else p:=2 fi: while A124271_mod(p)<>0 do p:=nextprime( p ) od: p end # M. F. Hasler, Nov 10 2006
  • Mathematica
    Select[Prime@ Range@ 125, Divisible[Sum[(Prime[i]^# - 1)/(Prime[i] - 1), {i, 1, #}], #] &] (* Michael De Vlieger, Jul 17 2016 *)
  • PARI
    isA124273(p) = isprime(p)&&!sum(i=1, p, sum(j=0, p-1, Mod(prime(i), p)^j)) \\ Jianing Song, Oct 20 2018
Showing 1-2 of 2 results.