A124276 Terms k of A068563 such that k/2 is not a term of A068563.
1, 6, 18, 20, 42, 54, 60, 100, 126, 136, 156, 162, 180, 220, 294, 300, 342, 378, 408, 420, 468, 486, 500, 540, 620, 660, 680, 780, 820, 882, 900, 1026, 1092, 1100, 1134, 1224, 1260, 1314, 1332, 1404, 1458, 1500, 1620, 1806, 1860, 1980, 2028, 2040, 2058, 2100
Offset: 1
Keywords
Examples
A068563 begins 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 40, 42, ... . Thus a(0) = 1, a(1) = 6, a(2) = 18, a(3) = 20, a(4) = 42 because 1/2, 3, 9, 10, 21 are not the terms of A068563.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A068563.
Programs
-
Maple
a:= proc(n) option remember; local k; for k from `if`(n=1, 1, a(n-1)+1) while (2&^k mod k <> 4&^k mod k) or (irem(k, 2, 'r')=0 and (2&^r mod r = 4&^r mod r)) do od; k end: seq(a(n), n=1..50); # Alois P. Heinz, May 16 2013
-
Mathematica
Prepend[Select[Range[2, 2100], (PowerMod[2, #, #] == PowerMod[4, #, #]) && ! (PowerMod[2, #/2, #/2] == PowerMod[4, #/2, #/2]) &], 1]
Comments