A124278 Triangle of the number of nondegenerate k-gons having perimeter n and whose sides are nondecreasing, for k=3..n.
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 3, 2, 2, 1, 1, 3, 4, 4, 3, 2, 1, 1, 2, 5, 5, 4, 3, 2, 1, 1, 4, 7, 8, 6, 5, 3, 2, 1, 1, 3, 8, 9, 9, 6, 5, 3, 2, 1, 1, 5, 11, 14, 12, 10, 7, 5, 3, 2, 1, 1, 4, 12, 16, 16, 13, 10, 7, 5, 3, 2, 1, 1, 7, 16, 23, 22, 19, 14, 11, 7, 5, 3, 2, 1, 1, 5, 18, 25, 28, 24, 20, 14, 11, 7, 5, 3, 2, 1, 1
Offset: 3
Examples
For polygons having perimeter 7: 2 triangles, 2 quadrilaterals, 2 pentagons, 1 hexagon and 1 heptagon. The triangle begins 1 0 1 1 1 1 1 1 1 1 2 2 2 1 1 1 3 2 2 1 1
Links
- T. D. Noe, Rows n=3..102 of triangle, flattened
- G. E. Andrews, P. Paule and A. Riese, MacMahon's Partition Analysis IX: k-Gon Partitions, Bull. Austral. Math. Soc. 64 (2001), 321-329.
- James East, Ron Niles, Integer polygons of given perimeter, arXiv:1710.11245 [math.CO], 2017.
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1], `if`(i<1, [], zip((x, y)-> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i)[]]), 0))) end: T:= n-> b(n, ceil(n/2)-1)[4..n+1][]: seq(T(n), n=3..20); # Alois P. Heinz, Jul 15 2013
-
Mathematica
Flatten[Table[p=IntegerPartitions[n]; Length[Select[p, Length[ # ]==k && #[[1]] < Total[Rest[ # ]]&]], {n,3,30}, {k,3,n}]] (* second program: *) QP = QPochhammer; T[n_, k_] := SeriesCoefficient[x^k*(1/QP[x, x, k] + x^(k - 2)/((x-1)*QP[x^2, x^2, k-1])), {x, 0, n}]; Table[T[n, k], {n, 3, 16}, {k, 3, n}] // Flatten (* Jean-François Alcover, Jan 08 2016 *)
Formula
G.f. for column k is x^k/(product_{i=1..k} 1-x^i) - x^(2k-2)/(1-x)/(product_{i=1..k-1} 1-x^(2i)).
Comments