cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124278 Triangle of the number of nondegenerate k-gons having perimeter n and whose sides are nondecreasing, for k=3..n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 3, 2, 2, 1, 1, 3, 4, 4, 3, 2, 1, 1, 2, 5, 5, 4, 3, 2, 1, 1, 4, 7, 8, 6, 5, 3, 2, 1, 1, 3, 8, 9, 9, 6, 5, 3, 2, 1, 1, 5, 11, 14, 12, 10, 7, 5, 3, 2, 1, 1, 4, 12, 16, 16, 13, 10, 7, 5, 3, 2, 1, 1, 7, 16, 23, 22, 19, 14, 11, 7, 5, 3, 2, 1, 1, 5, 18, 25, 28, 24, 20, 14, 11, 7, 5, 3, 2, 1, 1
Offset: 3

Views

Author

T. D. Noe, Oct 24 2006

Keywords

Comments

For a k-gon to be nondegenerate, the longest side must be shorter than the sum of the remaining sides.
T(n,k) = number of partitions of n into k parts (k >= 3) in which all parts are less than n/2. Also T(n,k) = number of partitions of 2*n into k parts in which all parts are even and less than n. - L. Edson Jeffery, Mar 19 2012

Examples

			For polygons having perimeter 7: 2 triangles, 2 quadrilaterals, 2 pentagons, 1 hexagon and 1 heptagon. The triangle begins
1
0 1
1 1 1
1 1 1 1
2 2 2 1 1
1 3 2 2 1 1
		

Crossrefs

Cf. A124287 (similar, but with no restriction on the sides).
Cf. A210249 (gives row sums of this sequence for n >= 3).
Cf. A005044 (k=3), A062890 (k=4), A069906 (k=5), A069907 (k=6), A288253 (k=7), A288254 (k=8), A288255 (k=9), A288256 (k=10).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1], `if`(i<1, [],
          zip((x, y)-> x+y, b(n, i-1), `if`(i>n, [],
                        [0, b(n-i, i)[]]), 0)))
        end:
    T:= n-> b(n, ceil(n/2)-1)[4..n+1][]:
    seq(T(n), n=3..20);  # Alois P. Heinz, Jul 15 2013
  • Mathematica
    Flatten[Table[p=IntegerPartitions[n]; Length[Select[p, Length[ # ]==k && #[[1]] < Total[Rest[ # ]]&]], {n,3,30}, {k,3,n}]]
    (* second program: *)
    QP = QPochhammer; T[n_, k_] := SeriesCoefficient[x^k*(1/QP[x, x, k] + x^(k - 2)/((x-1)*QP[x^2, x^2, k-1])), {x, 0, n}]; Table[T[n, k], {n, 3, 16}, {k, 3, n}] // Flatten (* Jean-François Alcover, Jan 08 2016 *)

Formula

G.f. for column k is x^k/(product_{i=1..k} 1-x^i) - x^(2k-2)/(1-x)/(product_{i=1..k-1} 1-x^(2i)).