cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124297 a(n) = 5*F(n)^2 + 5*F(n) + 1, where F(n) = Fibonacci(n).

Original entry on oeis.org

1, 11, 11, 31, 61, 151, 361, 911, 2311, 5951, 15401, 40051, 104401, 272611, 712531, 1863551, 4875781, 12760031, 33398201, 87424711, 228859951, 599129311, 1568486161, 4106261531, 10750188961, 28144128251, 73681909211, 192901135711
Offset: 0

Views

Author

Alexander Adamchuk, Oct 25 2006

Keywords

Comments

11 = Lucas(5) divides a(1+10k), a(2+10k), and a(9+10k). Last digit of a(n) is 1, or a(n) mod 10 = 1. For odd n there exists the so-called Aurifeuillian factorization A001946(n) = Lucas(5n) = Lucas(n)*A(n)*B(n) = A000032(n)*A124296(n)*A124297(n), where A(n) = A124296(n) = 5*F(n)^2 - 5*F(n) + 1 and B(n) = A124297(n) = 5*F(n)^2 + 5*F(n) + 1, where F(n) = Fibonacci(n).

Crossrefs

Programs

  • Mathematica
    Table[5*Fibonacci[n]^2+5*Fibonacci[n]+1,{n,0,50}]
    LinearRecurrence[{4,-2,-6,4,2,-1},{1,11,11,31,61,151},30] (* Harvey P. Dale, Feb 23 2023 *)
  • PARI
    a(n)=subst(5*t*(t+1)+1,t,fibonacci(n)) \\ Charles R Greathouse IV, Jan 03 2013

Formula

a(n) = 5*Fibonacci(n)^2 + 5*Fibonacci(n) + 1.
G.f.: -(11*x^5-21*x^4-15*x^3+31*x^2-7*x-1) / ((x-1)*(x+1)*(x^2-3*x+1)*(x^2+x-1)). [Colin Barker, Jan 03 2013]