cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124305 Riordan array (1, 2*sqrt(3)*sin(arcsin(3*sqrt(3)*x/2)/3)/3).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 3, 0, 3, 0, 1, 0, 0, 7, 0, 4, 0, 1, 0, 12, 0, 12, 0, 5, 0, 1, 0, 0, 30, 0, 18, 0, 6, 0, 1, 0, 55, 0, 55, 0, 25, 0, 7, 0, 1, 0, 0, 143, 0, 88, 0, 33, 0, 8, 0, 1
Offset: 0

Views

Author

Paul Barry, Oct 25 2006

Keywords

Examples

			Triangle begins
  1,
  0,  1,
  0,  0,  1,
  0,  1,  0,  1,
  0,  0,  2,  0,  1,
  0,  3,  0,  3,  0,  1,
  0,  0,  7,  0,  4,  0,  1,
  0, 12,  0, 12,  0,  5,  0,  1
From _Paul Barry_, Sep 28 2009: (Start)
Production matrix is
  0, 1,
  0, 0, 1,
  0, 1, 0, 1,
  0, 0, 1, 0, 1,
  0, 1, 0, 1, 0, 1,
  0, 0, 1, 0, 1, 0, 1,
  0, 1, 0, 1, 0, 1, 0, 1,
  0, 0, 1, 0, 1, 0, 1, 0, 1,
  0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 (End)
		

Crossrefs

Cf. A047749 (row sums), A098746 (diagonal sums), A124304 (inverse).

Programs

  • Magma
    A124305:= func< n,k | n eq 0 select 1 else (1/2)*(1+(-1)^(n-k))*(k/n)*Binomial(n + Floor((n-k)/2) -1, n-1) >;
    [A124305(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 25 2023
    
  • Mathematica
    A124305[n_, k_]:= If[n==0, 1, (1/2)*(1+(-1)^(n-k))*(k/n)*Binomial[n +(n-k)/2 -1, (n-k)/2]];
    Table[A124305[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 19 2023 *)
  • SageMath
    def A124305(n,k): return 1 if n==0 else ((n-k+1)%2)*k*binomial(n + (n-k)//2 -1, n-1)//n
    flatten([[A124305(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 25 2023

Formula

Sum_{k=0..n} T(n, k) = A047749(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = (1/2)*(1 + (-1)^n)*A098746(n/2).
From G. C. Greubel, Aug 19 2023: (Start)
T(n, k) = (1/2)*(1 + (-1)^(n-k))*(k/n)*binomial(n + (n-k)/2 - 1, (n-k)/2), with T(0, 0) = 1.
T(n, n) = 1.
T(n, n-2) = A001477(n-2).
T(n, n-4) = A055998(n-4).
T(n, n-6) = A111396(n-6).
T(n, 0) = 0^n.
T(n, 1) = ((1-(-1)^n)/2)*A001764(floor((n-1)/2)).
T(n, 2) = ((1+(-1)^n)/2)*A006013(floor((n-2)/2)).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n * A047749(n). (End)