cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124320 Triangle read by rows: T(n,k) = k!*binomial(n+k-1,k) (n >= 0, 0 <= k <= n), rising factorial power, Pochhammer symbol.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 1, 3, 12, 60, 1, 4, 20, 120, 840, 1, 5, 30, 210, 1680, 15120, 1, 6, 42, 336, 3024, 30240, 332640, 1, 7, 56, 504, 5040, 55440, 665280, 8648640, 1, 8, 72, 720, 7920, 95040, 1235520, 17297280, 259459200, 1, 9, 90, 990, 11880, 154440, 2162160, 32432400, 518918400, 8821612800
Offset: 0

Views

Author

Emeric Deutsch, Oct 26 2006

Keywords

Comments

This is the Pochhammer function which is defined P(x,n) = x*(x+1)*...*(x+n-1). By convention P(0,0) = 1. Also known as the rising factorial power. - Peter Luschny, Jan 09 2011

Examples

			Triangle starts:
[0]  1;
[1]  1, 1;
[2]  1, 2,   6;
[3]  1, 3,  12,  60;
[4]  1, 4,  20, 120,  840;
[5]  1, 5,  30, 210, 1680, 15120;
[6]  1, 6,  42, 336, 3024, 30240, 332640;
[7]  1, 7,  56, 504, 5040, 55440, 665280, 8648640;
Array starts:
[0] 1,  1,   6,   60,   840,   15120,   332640,   8648640, ... A000407
[1] 1,  2,  12,  120,  1680,   30240,   665280,  17297280, ... A001813
[2] 1,  3,  20,  210,  3024,   55440,  1235520,  32432400, ... A006963
[3] 1,  4,  30,  336,  5040,   95040,  2162160,  57657600, ... A001761
[4] 1,  5,  42,  504,  7920,  154440,  3603600,  98017920, ... A102693
[5] 1,  6,  56,  720, 11880,  240240,  5765760, 160392960, ... A093197
[6] 1,  7,  72,  990, 17160,  360360,  8910720, 253955520, ... A203473
[7] 1,  8,  90, 1320, 24024,  524160, 13366080, 390700800, ...
[8] 1,  9, 110, 1716, 32760,  742560, 19535040, 586051200, ...
[9] 1, 10, 132, 2184, 43680, 1028160, 27907200, 859541760, ...
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, Addison-Wesley, 1994.

Crossrefs

Cf. A123680 (row sums), A352601 (array main diagonal), A123680, A068424 (falling factorial power).

Programs

  • Maple
    T:=proc(n,k) if k<=n then binomial(n+k-1,k)*k! else 0 fi end: for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
    A124320 := (n,k)-> `if`(n=0 and k=0,1,pochhammer(n,k)); seq(print(seq(A124320(n,k),k=0..n)),n=0..5); # Peter Luschny, Jan 09 2011
  • Mathematica
    Table[Pochhammer[n,k], {n,0,5},{k,0,n}]//Flatten (* Peter Luschny, Jan 09 2011 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(if(n==0 && k==0, 1, (n+k-1)!/(n-1)!), ", "))) \\ G. C. Greubel, Nov 19 2017
  • Sage
    for n in (0..5) : [rising_factorial(n, k) for k in (0..n)] # Peter Luschny, Jan 09 2011
    

Formula

T(n,k) = GAMMA(n+k)/GAMMA(n) for n>0. - Peter Luschny, Jan 09 2011