A124320 Triangle read by rows: T(n,k) = k!*binomial(n+k-1,k) (n >= 0, 0 <= k <= n), rising factorial power, Pochhammer symbol.
1, 1, 1, 1, 2, 6, 1, 3, 12, 60, 1, 4, 20, 120, 840, 1, 5, 30, 210, 1680, 15120, 1, 6, 42, 336, 3024, 30240, 332640, 1, 7, 56, 504, 5040, 55440, 665280, 8648640, 1, 8, 72, 720, 7920, 95040, 1235520, 17297280, 259459200, 1, 9, 90, 990, 11880, 154440, 2162160, 32432400, 518918400, 8821612800
Offset: 0
Examples
Triangle starts: [0] 1; [1] 1, 1; [2] 1, 2, 6; [3] 1, 3, 12, 60; [4] 1, 4, 20, 120, 840; [5] 1, 5, 30, 210, 1680, 15120; [6] 1, 6, 42, 336, 3024, 30240, 332640; [7] 1, 7, 56, 504, 5040, 55440, 665280, 8648640; Array starts: [0] 1, 1, 6, 60, 840, 15120, 332640, 8648640, ... A000407 [1] 1, 2, 12, 120, 1680, 30240, 665280, 17297280, ... A001813 [2] 1, 3, 20, 210, 3024, 55440, 1235520, 32432400, ... A006963 [3] 1, 4, 30, 336, 5040, 95040, 2162160, 57657600, ... A001761 [4] 1, 5, 42, 504, 7920, 154440, 3603600, 98017920, ... A102693 [5] 1, 6, 56, 720, 11880, 240240, 5765760, 160392960, ... A093197 [6] 1, 7, 72, 990, 17160, 360360, 8910720, 253955520, ... A203473 [7] 1, 8, 90, 1320, 24024, 524160, 13366080, 390700800, ... [8] 1, 9, 110, 1716, 32760, 742560, 19535040, 586051200, ... [9] 1, 10, 132, 2184, 43680, 1028160, 27907200, 859541760, ...
References
- Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, Addison-Wesley, 1994.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- NIST Digital Library of Mathematical Functions, Pochhammer's Symbol
Crossrefs
Programs
-
Maple
T:=proc(n,k) if k<=n then binomial(n+k-1,k)*k! else 0 fi end: for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form A124320 := (n,k)-> `if`(n=0 and k=0,1,pochhammer(n,k)); seq(print(seq(A124320(n,k),k=0..n)),n=0..5); # Peter Luschny, Jan 09 2011
-
Mathematica
Table[Pochhammer[n,k], {n,0,5},{k,0,n}]//Flatten (* Peter Luschny, Jan 09 2011 *)
-
PARI
for(n=0,10, for(k=0,n, print1(if(n==0 && k==0, 1, (n+k-1)!/(n-1)!), ", "))) \\ G. C. Greubel, Nov 19 2017
-
Sage
for n in (0..5) : [rising_factorial(n, k) for k in (0..n)] # Peter Luschny, Jan 09 2011
Formula
T(n,k) = GAMMA(n+k)/GAMMA(n) for n>0. - Peter Luschny, Jan 09 2011
Comments