cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A352601 a(n) = RisingFactorial(2*n, n) = A124320(2*n, n).

Original entry on oeis.org

1, 2, 20, 336, 7920, 240240, 8910720, 390700800, 19769460480, 1133836704000, 72684900288000, 5150244363264000, 399703747322880000, 33719008124158156800, 3072176295756632064000, 300649528529562820608000, 31451820032947491201024000, 3502589049123697883750400000
Offset: 0

Views

Author

Peter Luschny, Mar 22 2022

Keywords

Crossrefs

Cf. A124320.

Programs

  • Mathematica
    Table[Pochhammer[2*n, n], {n, 0, 17}] (* Amiram Eldar, Mar 22 2022 *)
  • Python
    from sympy import rf
    def A352601(n): return rf(2*n,n) # Chai Wah Wu, Mar 22 2022
  • Sage
    def a(n): return rising_factorial(2*n, n)
    print([a(n) for n in range(18)])
    

Formula

a(n) ~ 3^(3*n - 1/2) * n^n / (2^(2*n - 1/2) * exp(n)). - Vaclav Kotesovec, Aug 02 2024

A368583 Table read by rows: T(n, k) = A124320(n + 1, k) * A132393(n, k).

Original entry on oeis.org

1, 0, 2, 0, 3, 12, 0, 8, 60, 120, 0, 30, 330, 1260, 1680, 0, 144, 2100, 11760, 30240, 30240, 0, 840, 15344, 113400, 428400, 831600, 665280, 0, 5760, 127008, 1169280, 5821200, 16632000, 25945920, 17297280, 0, 45360, 1176120, 13000680, 80415720, 302702400, 696215520, 908107200, 518918400
Offset: 0

Views

Author

Peter Luschny, Jan 10 2024

Keywords

Examples

			Triangle starts:
  [0] [1]
  [1] [0,   2]
  [2] [0,   3,   12]
  [3] [0,   8,   60,     120]
  [4] [0,  30,   330,   1260,   1680]
  [5] [0, 144,  2100,  11760,  30240,  30240]
  [6] [0, 840, 15344, 113400, 428400, 831600, 665280]
		

Crossrefs

Cf. A124320 (rising factorial), A132393 (unsigned Stirling1), A001813 (main diagonal), A052819 (row sums), A227457 (alternating row sums), A368584.

Programs

  • SageMath
    def Trow(n): return [rising_factorial(n+1, k)*stirling_number1(n, k)
                         for k in range(n+1)]
    for n in range(7): print(Trow(n))

A368584 Table read by rows: T(n, k) = A124320(n + 1, k) * A048993(n, k).

Original entry on oeis.org

1, 0, 2, 0, 3, 12, 0, 4, 60, 120, 0, 5, 210, 1260, 1680, 0, 6, 630, 8400, 30240, 30240, 0, 7, 1736, 45360, 327600, 831600, 665280, 0, 8, 4536, 216720, 2772000, 13305600, 25945920, 17297280, 0, 9, 11430, 956340, 20207880, 162162000, 575134560, 908107200, 518918400
Offset: 0

Views

Author

Peter Luschny, Jan 10 2024

Keywords

Examples

			Triangle starts:
  [0] [1]
  [1] [0, 2]
  [2] [0, 3,   12]
  [3] [0, 4,   60,    120]
  [4] [0, 5,  210,   1260,    1680]
  [5] [0, 6,  630,   8400,   30240,    30240]
  [6] [0, 7, 1736,  45360,  327600,   831600,   665280]
  [7] [0, 8, 4536, 216720, 2772000, 13305600, 25945920, 17297280]
		

Crossrefs

Cf. A124320 (rising factorial), A048993(Stirling2), A053492 (row sums), A213236 (alternating row sums), A001813 (main diagonal), A368583.

Programs

  • SageMath
    def Trow(n): return [rising_factorial(n+1, k)*stirling_number2(n, k) for k in range(n+1)]
    for n in range(7): print(Trow(n))

A265609 Array read by ascending antidiagonals: A(n,k) the rising factorial, also known as Pochhammer symbol, for n >= 0 and k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 6, 0, 1, 4, 12, 24, 24, 0, 1, 5, 20, 60, 120, 120, 0, 1, 6, 30, 120, 360, 720, 720, 0, 1, 7, 42, 210, 840, 2520, 5040, 5040, 0, 1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 0
Offset: 0

Views

Author

Peter Luschny, Dec 19 2015

Keywords

Comments

The Pochhammer function is defined P(x,n) = x*(x+1)*...*(x+n-1). By convention P(0,0) = 1.
From Antti Karttunen, Dec 19 2015: (Start)
Apart from the initial row of zeros, if we discard the leftmost column and divide the rest of terms A(n,k) with (n+k) [where k is now the once-decremented column index of the new, shifted position] we get the same array back. See the given recursive formula.
When the numbers in array are viewed in factorial base (A007623), certain repeating patterns can be discerned, at least in a few of the topmost rows. See comment in A001710 and arrays A265890, A265892. (End)
A(n,k) is the k-th moment (about 0) of a gamma (Erlang) distribution with shape parameter n and rate parameter 1. - Geoffrey Critzer, Dec 24 2018

Examples

			Square array A(n,k) [where n=row, k=column] is read by ascending antidiagonals as:
A(0,0), A(1,0), A(0,1), A(2,0), A(1,1), A(0,2), A(3,0), A(2,1), A(1,2), A(0,3), ...
Array starts:
n\k [0  1   2    3     4      5        6         7          8]
--------------------------------------------------------------
[0] [1, 0,  0,   0,    0,     0,       0,        0,         0]
[1] [1, 1,  2,   6,   24,   120,     720,     5040,     40320]
[2] [1, 2,  6,  24,  120,   720,    5040,    40320,    362880]
[3] [1, 3, 12,  60,  360,  2520,   20160,   181440,   1814400]
[4] [1, 4, 20, 120,  840,  6720,   60480,   604800,   6652800]
[5] [1, 5, 30, 210, 1680, 15120,  151200,  1663200,  19958400]
[6] [1, 6, 42, 336, 3024, 30240,  332640,  3991680,  51891840]
[7] [1, 7, 56, 504, 5040, 55440,  665280,  8648640, 121080960]
[8] [1, 8, 72, 720, 7920, 95040, 1235520, 17297280, 259459200]
.
Seen as a triangle, T(n, k) = Pochhammer(n - k, k), the first few rows are:
   [0] 1;
   [1] 1, 0;
   [2] 1, 1,  0;
   [3] 1, 2,  2,   0;
   [4] 1, 3,  6,   6,    0;
   [5] 1, 4, 12,  24,   24,    0;
   [6] 1, 5, 20,  60,  120,  120,     0;
   [7] 1, 6, 30, 120,  360,  720,   720,     0;
   [8] 1, 7, 42, 210,  840, 2520,  5040,  5040,     0;
   [9] 1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 0.
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, Addison-Wesley, 1994.
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 355.

Crossrefs

Triangle giving terms only up to column k=n: A124320.
Row 0: A000007, row 1: A000142, row 3: A001710 (from k=1 onward, shifted two terms left).
Column 0: A000012, column 1: A001477, column 2: A002378, columns 3-7: A007531, A052762, A052787, A053625, A159083 (shifted 2 .. 6 terms left respectively, i.e. without the extra initial zeros), column 8: A239035.
Row sums of the triangle: A000522.
A(n, n) = A000407(n-1) for n>0.
2^n*A(1/2,n) = A001147(n).
Cf. also A007623, A008279 (falling factorial), A173333, A257505, A265890, A265892.

Programs

  • Maple
    for n from 0 to 8 do seq(pochhammer(n,k), k=0..8) od;
  • Mathematica
    Table[Pochhammer[n, k], {n, 0, 8}, {k, 0, 8}]
  • Sage
    for n in (0..8): print([rising_factorial(n,k) for k in (0..8)])
    
  • Scheme
    (define (A265609 n) (A265609bi (A025581 n) (A002262 n)))
    (define (A265609bi row col) (if (zero? col) 1 (* (+ row col -1) (A265609bi row (- col 1)))))
    ;; Antti Karttunen, Dec 19 2015

Formula

A(n,k) = Gamma(n+k)/Gamma(n) for n > 0 and n^k for n=0.
A(n,k) = Sum_{j=0..k} n^j*S1(k,j), S1(n,k) the Stirling cycle numbers A132393(n,k).
A(n,k) = (k-1)!/(Sum_{j=0..k-1} (-1)^j*binomial(k-1, j)/(j+n)) for n >= 1, k >= 1.
A(n,k) = (n+k-1)*A(n,k-1) for k >= 1, A(n,0) = 1. - Antti Karttunen, Dec 19 2015
E.g.f. for row k: 1/(1-x)^k. - Geoffrey Critzer, Dec 24 2018
A(n, k) = FallingFactorial(n + k - 1, k). - Peter Luschny, Mar 22 2022
G.f. for row n as a continued fraction of Stieltjes type: 1/(1 - n*x/(1 - x/(1 - (n+1)*x/(1 - 2*x/(1 - (n+2)*x/(1 - 3*x/(1 - ... ))))))). See Wall, Chapter XVIII, equation 92.5. Cf. A226513. - Peter Bala, Aug 27 2023

A384164 a(n) = Product_{k=0..n-1} (3*n+k).

Original entry on oeis.org

1, 3, 42, 990, 32760, 1395360, 72681840, 4475671200, 318073392000, 25622035084800, 2306992893004800, 229601607198163200, 25028504609870361600, 2965681982933429760000, 379534960108578193920000, 52170410224819317150720000, 7666009844358186506465280000, 1199151678674216896627654656000
Offset: 0

Views

Author

Seiichi Manyama, May 21 2025

Keywords

Crossrefs

Programs

  • Magma
    [1] cat  [&*[(3*n + k): k in [0..n-1]]: n in [1..16]]; // Vincenzo Librandi, May 22 2025
  • Mathematica
    a[n_]:=Product[(3*n+k),{k,0,n-1}]; Table[a[n],{n,0,15}] (* Vincenzo Librandi, May 22 2025 *)
  • PARI
    a(n) = prod(k=0, n-1, 3*n+k);
    
  • Python
    from sympy import rf
    def A384164(n): return rf(3*n,n) # Chai Wah Wu, May 21 2025
    
  • Sage
    def a(n): return rising_factorial(3*n, n)
    

Formula

a(n) = RisingFactorial(3*n,n) = A124320(3*n,n) = n! * binomial(4*n-1,n).
a(n) = n! * [x^n] 1/(1 - x)^(3*n).
a(n) = (3/4) * A061924(n) for n > 0.

A293617 Array of triangles read by ascending antidiagonals, T(m, n, k) = Pochhammer(m, k) * Stirling2(n + m, k + m) with m >= 0, n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 2, 1, 0, 1, 10, 3, 7, 3, 0, 1, 15, 4, 25, 12, 2, 0, 1, 21, 5, 65, 30, 6, 1, 0, 1, 28, 6, 140, 60, 12, 15, 7, 0, 1, 36, 7, 266, 105, 20, 90, 50, 12, 0, 1, 45, 8, 462, 168, 30, 350, 195, 60, 6, 0, 1, 55, 9, 750, 252, 42, 1050, 560, 180, 24, 1, 0
Offset: 0

Views

Author

Peter Luschny, Oct 20 2017

Keywords

Examples

			Array starts:
m\j| 0   1  2     3       4       5       6       7       8       9      10
---|-----------------------------------------------------------------------
m=0| 1,  0, 0,    0,      0,      0,      0,      0,      0,      0,      0
m=1| 1,  1, 1,    1,      3,      2,      1,      7,     12,      6,      1
m=2| 1,  3, 2,    7,     12,      6,     15,     50,     60,     24,     31
m=3| 1,  6, 3,   25,     30,     12,     90,    195,    180,     60,    301
m=4| 1, 10, 4,   65,     60,     20,    350,    560,    420,    120,   1701
m=5| 1, 15, 5,  140,    105,     30,   1050,   1330,    840,    210,   6951
m=6| 1, 21, 6,  266,    168,     42,   2646,   2772,   1512,    336,  22827
m=7| 1, 28, 7,  462,    252,     56,   5880,   5250,   2520,    504,  63987
m=8| 1, 36, 8,  750,    360,     72,  11880,   9240,   3960,    720, 159027
m=9| 1, 45, 9, 1155,    495,     90,  22275,  15345,   5940,    990, 359502
   A000217, A001296,A027480,A002378,A001297,A293475,A033486,A007531,A001298
.
m\j| ...      11      12      13      14
---|-----------------------------------------
m=0| ...,      0,      0,      0,      0, ... [A000007]
m=1| ...,     15,     50,     60,     24, ... [A028246]
m=2| ...,    180,    390,    360,    120, ... [A053440]
m=3| ...,   1050,   1680,   1260,    360, ... [A294032]
m=4| ...,   4200,   5320,   3360,    840, ...
m=5| ...,  13230,  13860,   7560,   1680, ...
m=6| ...,  35280,  31500,  15120,   3024, ...
m=7| ...,  83160,  64680,  27720,   5040, ...
m=8| ..., 178200, 122760,  47520,   7920, ...
m=9| ..., 353925, 218790,  77220,  11880, ...
         A293476,A293608,A293615,A052762, ...
.
The parameter m runs over the triangles and j indexes the triangles by reading them by rows. Let T(m, n) denote the row [T(m, n, k) for 0 <= k <= n] and T(m) denote the triangle [T(m, n) for n >= 0]. Then for instance T(2) is the triangle A053440, T(3, 2) is row 2 of A294032 (which is [25, 30, 12]) and T(3, 2, 1) = 30.
.
Remark: To adapt the sequences A028246 and A053440 to our enumeration use the exponential generating functions exp(x)/(1 - y*(exp(x) - 1)) and exp(x)*(2*exp(x) - y*exp(2*x) + 2*y*exp(x) - 1 - y)/(1 - y*(exp(x) - 1))^2 instead of those indicated in their respective entries.
		

Crossrefs

A000217(n) = T(n, 1, 0), A001296(n) = T(n, 2, 0), A027480(n) = T(n, 2, 1),
A002378(n) = T(n, 2, 2), A001297(n) = T(n, 3, 0), A293475(n) = T(n, 3, 1),
A033486(n) = T(n, 3, 2), A007531(n) = T(n, 3, 3), A001298(n) = T(n, 4, 0),
A293476(n) = T(n, 4, 1), A293608(n) = T(n, 4, 2), A293615(n) = T(n, 4, 3),
A052762(n) = T(n, 4, 4), A052787(n) = T(n, 5, 5), A000225(n) = T(1, n, 1),
A028243(n) = T(1, n, 2), A028244(n) = T(1, n, 3), A028245(n) = T(1, n, 4),
A032180(n) = T(1, n, 5), A228909(n) = T(1, n, 6), A228910(n) = T(1, n, 7),
A000225(n) = T(2, n, 0), A007820(n) = T(n, n, 0).
A028246(n,k) = T(1, n, k), A053440(n,k) = T(2, n, k), A294032(n,k) = T(3, n, k),
A293926(n,k) = T(n, n, k), A124320(n,k) = T(n, k, k), A156991(n,k) = T(k, n, n).
Cf. A293616.

Programs

  • Maple
    A293617 := proc(m, n, k) option remember:
    if m = 0 then 0^n elif k < 0 or k > n then 0 elif n = 0 then 1 else
    (k+m)*A293617(m,n-1,k) + k*A293617(m,n-1,k-1) + A293617(m-1,n,k) fi end:
    for m in [$0..4] do for n in [$0..6] do print(seq(A293617(m, n, k), k=0..n)) od od;
    # Sample uses:
    A027480 := n -> A293617(n, 2, 1): A293608 := n -> A293617(n, 4, 2):
    # Flatten:
    a := proc(n) local w; w := proc(k) local t, s; t := 1; s := 1;
    while t <= k do s := s + 1; t := t + s od; [s - 1, s - t + k] end:
    seq(A293617(n - k, w(k)[1], w(k)[2]), k=0..n) end: seq(a(n), n = 0..11);
  • Mathematica
    T[m_, n_, k_] := Pochhammer[m, k] StirlingS2[n + m, k + m];
    For[m = 0, m < 7, m++, Print[Table[T[m, n, k], {n,0,6}, {k,0,n}]]]
    A293617Row[m_, n_] := Table[T[m, n, k], {k,0,n}];
    (* Sample use: *)
    A293926Row[n_] := A293617Row[n, n];

Formula

T(m,n,k) = (k + m)*T(m, n-1, k) + k*T(m, n-1, k-1) + T(m-1, n, k) with boundary conditions T(0, n, k) = 0^n; T(m, n, k) = 0 if k<0 or k>n; and T(m, 0, k) = 0^k.
T(m,n,k) = Pochhammer(m, k)*binomial(n + m, k + m)*NorlundPolynomial(n - k, -k - m).

A368119 Array read by ascending antidiagonals. A(n, k) = Product_{j=0..k-1} (n*j + 1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 15, 24, 1, 1, 1, 5, 28, 105, 120, 1, 1, 1, 6, 45, 280, 945, 720, 1, 1, 1, 7, 66, 585, 3640, 10395, 5040, 1, 1, 1, 8, 91, 1056, 9945, 58240, 135135, 40320, 1, 1, 1, 9, 120, 1729, 22176, 208845, 1106560, 2027025, 362880, 1
Offset: 0

Views

Author

Peter Luschny, Dec 18 2023

Keywords

Comments

A(n, k) is the number of increasing (n + 1)-ary trees on k vertices. (Following a comment of David Callan in A007559.)

Examples

			Array A(n, k) starts:
  [0] 1, 1, 1,   1,    1,      1,       1,         1, ...  A000012
  [1] 1, 1, 2,   6,   24,    120,     720,      5040, ...  A000142
  [2] 1, 1, 3,  15,  105,    945,   10395,    135135, ...  A001147
  [3] 1, 1, 4,  28,  280,   3640,   58240,   1106560, ...  A007559
  [4] 1, 1, 5,  45,  585,   9945,  208845,   5221125, ...  A007696
  [5] 1, 1, 6,  66, 1056,  22176,  576576,  17873856, ...  A008548
  [6] 1, 1, 7,  91, 1729,  43225, 1339975,  49579075, ...  A008542
  [7] 1, 1, 8, 120, 2640,  76560, 2756160, 118514880, ...  A045754
  [8] 1, 1, 9, 153, 3825, 126225, 5175225, 253586025, ...  A045755
		

Crossrefs

Programs

  • SageMath
    def A(n, k): return n**k * rising_factorial(1/n, k) if n > 0 else 1
    for n in range(9): print([A(n, k) for k in range(8)])

Formula

Let rf(n, k) denote the rising factorial and ff(n,k) the falling factorial.
A(n, k) = n^k * rf(1/n, k) if n > 0 else 1.
A(n, k) = (-n)^k * ff(-1/n, k) if n > 0 else 1.
A(n, k) = (n^k * Gamma(k + 1/n)) / Gamma(1/n) for n > 0.
A(n, k) = ((-n)^k * Gamma(1 - 1/n)) / Gamma(1 - 1/n - k) for n > 0.
A(n, k) = k! * [x^k](1 - n*x)^(-1/n).
A(n, k) = [x^k] hypergeom([1, 1/n], [], n*x).
Column n + 1 has a linear recurrence with constant coefficients and signature ((-1)^k*binomial(n+1, n-k) for k=0..n).
Showing 1-7 of 7 results.