cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124321 Triangle read by rows: T(n,k) is the number of set partitions of {1,2,...,n} (or of any n-set) having k blocks of odd size (0<=k<=n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 4, 0, 1, 4, 0, 10, 0, 1, 0, 31, 0, 20, 0, 1, 31, 0, 136, 0, 35, 0, 1, 0, 379, 0, 441, 0, 56, 0, 1, 379, 0, 2500, 0, 1176, 0, 84, 0, 1, 0, 6556, 0, 11740, 0, 2730, 0, 120, 0, 1, 6556, 0, 59671, 0, 43870, 0, 5712, 0, 165, 0, 1, 0, 150349, 0, 378356, 0, 138622, 0
Offset: 0

Views

Author

Emeric Deutsch, Oct 28 2006

Keywords

Comments

Row sums are the Bell numbers (A000110).
Sum_{k=0..n} k*T(n,k) = A102286(n).
T(2*n,0) = A005046(n); T(2*n+1,0) = 0.

Examples

			T(3,1) = 4 because we have 123, 1|23, 12|3 and 13|2.
Triangle starts:
  1;
  0,  1;
  1,  0,  1;
  0,  4,  0,  1;
  4,  0, 10,  0,  1;
  0, 31,  0, 20,  0,  1;
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 225.

Crossrefs

Programs

  • Maple
    G:=exp(t*sinh(z)+cosh(z)-1): Gser:=simplify(series(G,z=0,15)): for n from 0 to 12 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 12 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1)*`if`(irem(i, 2)=1, x^j, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Mar 08 2015
  • Mathematica
    nn = 10; Range[0, nn]! CoefficientList[Series[Exp[ (Cosh[x] - 1) + y Sinh[x]], {x, 0, nn}], {x, y}] // Grid (* Geoffrey Critzer, Aug 28 2012 *)

Formula

E.g.f.: G(t,z) = exp(t*sinh(z)+cosh(z)-1).