cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124322 Triangle read by rows: T(n,k) is the number of set partitions of {1,2,...,n} (or of any n-set) having k blocks of even size (0<=k<=floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 7, 3, 12, 25, 15, 37, 91, 60, 15, 128, 329, 315, 105, 457, 1415, 1533, 630, 105, 1872, 6297, 7623, 4410, 945, 8169, 29431, 42150, 27405, 7875, 945, 37600, 151085, 233475, 176715, 69300, 10395, 188685, 802099, 1365243, 1199220, 533610
Offset: 0

Views

Author

Emeric Deutsch, Oct 28 2006

Keywords

Comments

Row n has 1+floor(n/2) terms. Sum of row n is the Bell number B(n)=A000110(n). Sum_{k=0..floor(n/2)} k*T(n,k) = A102287(n). T(n,0)=A003724(n).

Examples

			T(4,1) = 7 because we have 1234, 14|2|3, 1|24|3, 1|2|34, 13|2|4, 1|23|4 and 12|3|4.
Triangle starts:
   1;
   1;
   1,  1;
   2,  3;
   5,  7,  3;
  12, 25, 15;
  37, 91, 60, 15;
  ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 225.

Crossrefs

Programs

  • Maple
    G:=exp(sinh(z)+t*(cosh(z)-1)): Gser:=simplify(series(G,z=0,16)): for n from 0 to 13 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 13 do seq(coeff(P[n],t,j),j=0..floor(n/2)) od; # yields sequence in triangular form
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1)*`if`(irem(i, 2)=0, x^j, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Mar 08 2015
  • Mathematica
    nn = 10; Range[0, nn]! CoefficientList[Series[Exp[y (Cosh[x] - 1) + Sinh[x]], {x, 0, nn}], {x, y}] // Grid  (* Geoffrey Critzer, Aug 28 2012*)

Formula

E.g.f.: exp[sinh(z)+t(cosh(z)-1)].