A124325 Number of blocks of size >1 in all partitions of an n-set.
0, 0, 1, 4, 17, 76, 362, 1842, 9991, 57568, 351125, 2259302, 15288000, 108478124, 805037105, 6233693772, 50257390937, 421049519856, 3659097742426, 32931956713294, 306490813820239, 2945638599347760, 29198154161188501
Offset: 0
Keywords
Examples
a(3) = 4 because in the partitions 123, 12|3, 13|2, 1|23, 1|2|3 we have four blocks of size >1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
Programs
-
Maple
with(combinat): c:=n->bell(n+1)-bell(n)-n*bell(n-1): seq(c(n),n=0..23);
-
Mathematica
nn=22;Range[0,nn]!CoefficientList[Series[(Exp[x]-1-x)Exp[Exp[x]-1],{x,0,nn}],x] (* Geoffrey Critzer, Mar 28 2013 *)
-
PARI
N = 66; x = 'x + O('x^N); egf = (exp(x)-1-x)*exp(exp(x)-1) + 'c0; gf = serlaplace(egf); v = Vec(gf); v[1]-='c0; v /* Joerg Arndt, Mar 29 2013 */
Formula
a(n) = B(n+1)-B(n)-n*B(n-1), where B(q) are the Bell numbers (A000110).
E.g.f.: (exp(z)-1-z)*exp(exp(z)-1).
a(n) = Sum_{k=0..floor(n/2)} k*A124324(n,k).
a(n) = A285595(n-1,1). - Alois P. Heinz, Apr 24 2017
a(n) = Sum_{k=1..n*(n-1)/2} k * A124327(n-1,k) for n>1. - Alois P. Heinz, Dec 05 2023
Comments