cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124329 Number of ordered trees with n edges, with thinning limbs and with root of degree 2. An ordered tree with thinning limbs is such that if a node has k children, all its children have at most k children.

Original entry on oeis.org

0, 1, 2, 5, 10, 22, 46, 101, 220, 492, 1104, 2515, 5762, 13327, 30994, 72555, 170654, 403350, 957134, 2279947, 5449012, 13063595, 31406516, 75701507, 182902336, 442885682, 1074604288, 2612341855, 6361782006, 15518343596, 37912613630
Offset: 1

Views

Author

Emeric Deutsch, Nov 03 2006

Keywords

Comments

Column 2 of A124328.

Crossrefs

Programs

  • Maple
    G:=(1-z-2*z^2-sqrt(1-2*z-3*z^2+4*z^3))/2/z^2/(1-z): Gser:=series(G,z=0,40): seq(coeff(Gser,z,n),n=1..36);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<4, [0$2, 1, 2][n+1],
          ((3*n+3)*a(n-1) +(n-4)*a(n-2) -(7*n-13)*a(n-3)
           +(4*n-10)*a(n-4)) / (n+2))
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Jul 08 2014
  • Mathematica
    Rest[CoefficientList[Series[(1-x-2*x^2-Sqrt[1-2*x-3*x^2+4*x^3])/2/x^2/(1-x), {x, 0, 20}], x]] (* Vaclav Kotesovec, Sep 04 2014 *)
    Table[2*Sum[((Binomial[2*k + 1, k + 1]*Binomial[n - k, k + 1])/(k + 2)), {k, 0, (n - 1)/2}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 22 2016, after Vladimir Kruchinin *)
  • Maxima
    a(n):=2*sum((binomial(2*k+1, k+1)*binomial(n-k, k+1))/(k+2), k, 0, (n-1)/2); /* Vladimir Kruchinin, Apr 21 2016 */

Formula

G.f.: [1-z-2z^2-sqrt(1-2z-3z^2+4z^3)]/[2(1-z)z^2].
a(n) ~ sqrt(493+101*sqrt(17)) * (1+sqrt(17))^n / (sqrt(Pi) * n^(3/2) * 2^(n+7/2)). - Vaclav Kotesovec, Sep 04 2014
a(n) = 2*Sum_{k = 0..(n-1)/2} binomial(2*k+1, k+1)*binomial(n-k, k+1)/(k+2). - Vladimir Kruchinin, Apr 21 2016
D-finite with recurrence (n+2)*a(n) +3*(-n-1)*a(n-1) +(-n+4)*a(n-2) +(7*n-13)*a(n-3) +2*(-2*n+5)*a(n-4)=0. - R. J. Mathar, Jul 26 2022