cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124340 Number of solutions to n = x^2 + 2*y^2 + 4*(T(z) + T(w)) + 1 where x and y are integers, z and w are nonnegative integers and T(x) = (x^2+x)/2.

Original entry on oeis.org

1, 2, 2, 4, 4, 4, 8, 8, 7, 8, 10, 8, 12, 16, 8, 16, 18, 14, 18, 16, 16, 20, 24, 16, 21, 24, 20, 32, 28, 16, 32, 32, 20, 36, 32, 28, 36, 36, 24, 32, 42, 32, 42, 40, 28, 48, 48, 32, 57, 42, 36, 48, 52, 40, 40, 64, 36, 56, 58, 32, 60, 64, 56, 64, 48, 40, 66
Offset: 1

Views

Author

Michael Somos, Oct 26 2006

Keywords

Comments

Number 18 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 2*q^2 + 2*q^3 + 4*q^4 + 4*q^5 + 4*q^6 + 8*q^7 + 8*q^8 + 7*q^9 + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    A091337 := n -> [0, 1, 0, -1, 0, -1, 0, 1][`mod`(n, 8)+1]:
    seq(add(A091337(n/d)d, d in divisors(n)), n = 1..60); # Peter Bala, Jan 06 2021
  • Mathematica
    a[n_] := Sum[JacobiSymbol[2, d]*n/d, {d, Divisors[n]}]; a /@ Range[80] (* Jean-François Alcover, Jan 10 2014 *)
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q^2]^3 QPochhammer[ q^4] QPochhammer[ q^8]^2 / QPochhammer[ q]^2, {q, 0, n}]; (* Michael Somos, Jul 09 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, n / d * kronecker(2, d)))};
    
  • PARI
    {a(n) = my(A, p, e, f); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; f = kronecker( 2, p); (p^(e+1) - f^(e+1)) / (p - f)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^4 + A) * eta(x^8 + A)^2 / eta(x + A)^2, n))};

Formula

Expansion of q * phi(q) * phi(q^2) * psi(q^4)^2 in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q^2)^3 * eta(q^4) * eta(q^8)^2 / eta(q)^2 in powers of q.
Euler transform of period 8 sequence [ 2, -1, 2, -2, 2, -1, 2, -4, ...].
a(n) is multiplicative with a(2^e) = 2^e, a(p^e) = (p^(e+1) - 1)/(p - 1) if p == 1, 7 (mod 8), a(p^e) = (p^(e+1) + (-1)^e)/(p + 1) if p == 3, 5 (mod 8).
G.f.: Sum_{k>0} k * x^k * (1 - x^(2*k)) / (1 + x^(4*k)).
G.f.: x * Product_{k>0} (1 + x^k)^2 * (1 - x^(2*k)) * (1 - x^(4*k)) * (1 - x^(8*k))^2.
From Peter Bala, Jan 06 2021: (Start)
a(n) = Sum_{ d | n } X(n/d)*d, where X(k) = A091337(k) is a non-principal Dirichlet charcter modulo 8.
G.f.: A(x) = Sum_{n = -oo..oo} (-1)^n*x^(4*n+1)/(1 - x^(4*n+1))^2. (End)
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A328895. - Amiram Eldar, Feb 20 2024