A124396 Denominators of partial sums of a series for 3/sqrt(5) = (3/5)*sqrt(5).
1, 9, 27, 729, 6561, 6561, 177147, 1594323, 4782969, 387420489, 3486784401, 10460353203, 282429536481, 2541865828329, 2541865828329, 22876792454961, 205891132094649, 617673396283947, 50031545098999707, 450283905890997363
Offset: 0
Examples
a(3) = 729 because r(3) = 1 + 2/9 + 2/27 + 20/729 = 965/729 = A123749(3)/a(3).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
GAP
List([0..20], n-> DenominatorRat(Sum([0..n], k-> Binomial(2*k, k)/9^k)) ); # G. C. Greubel, Dec 25 2019
-
Magma
[Denominator(&+[(k+1)*Catalan(k)/9^k: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 25 2019
-
Maple
seq(denom(add(binomial(2*k, k)/9^k, k = 0..n)), n = 0..20); # G. C. Greubel, Dec 25 2019
-
Mathematica
Table[Denominator[Sum[(k+1)*CatalanNumber[k]/9^k, {k,0,n}]], {n,0,20}] (* G. C. Greubel, Dec 25 2019 *)
-
PARI
a(n) = denominator(sum(k=0, n, binomial(2*k,k)/9^k)); \\ Michel Marcus, Aug 12 2019
-
Sage
[denominator(sum((k+1)*catalan_number(k)/9^k for k in (0..n))) for n in (0..20)] # G. C. Greubel, Dec 25 2019
Comments