A124397 Numerators of partial sums of a series for sqrt(5)/3.
1, 3, 21, 17, 99, 2223, 12039, 56763, 59337, 286961, 7358781, 36088473, 183146521, 181066401, 36534213, 4535753121, 22798981683, 113528187171, 113891192583, 568042152363, 14228623114839, 71035463999307, 355598139789279, 14210752102407, 1777633916948199
Offset: 0
Examples
a(3) = 17 because r(3) = 1 - 2/5 + 6/25 - 4/25 = 17/25 = a(3)/A124398(3).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Wolfdieter Lang, Rationals and more.
Crossrefs
Programs
-
GAP
List([0..20], n-> NumeratorRat(Sum([0..n], k-> (-1)^k*Binomial(2*k, k)/5^k)) ); # G. C. Greubel, Dec 25 2019
-
Magma
[Numerator(&+[(-1)^k*(k+1)*Catalan(k)/5^k: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 25 2019
-
Maple
seq(numer(add((-1)^k*binomial(2*k, k)/5^k, k = 0..n)), n = 0..20); # G. C. Greubel, Dec 25 2019
-
Mathematica
Table[Numerator[Sum[(-1)^k*(k+1)*CatalanNumber[k]/5^k, {k,0,n}]], {n,0,20}] (* G. C. Greubel, Dec 25 2019 *)
-
PARI
a(n) = numerator(sum(k=0, n, ((-1)^k)*binomial(2*k,k)/5^k)); \\ Michel Marcus, Aug 11 2019
-
Sage
[numerator(sum((-1)^k*(k+1)*catalan_number(k)/5^k for k in (0..n))) for n in (0..20)] # G. C. Greubel, Dec 25 2019
Comments