cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124398 Denominators of partial sums of a series for sqrt(5)/3.

Original entry on oeis.org

1, 5, 25, 25, 125, 3125, 15625, 78125, 78125, 390625, 9765625, 48828125, 244140625, 244140625, 48828125, 6103515625, 30517578125, 152587890625, 152587890625, 762939453125, 19073486328125, 95367431640625, 476837158203125, 19073486328125, 2384185791015625
Offset: 0

Views

Author

Wolfdieter Lang, Nov 10 2006

Keywords

Comments

Denominators of alternating sums over central binomial coefficients scaled by powers of 5.
Numerators are given by A124397.
For the rationals r(n) see the W. Lang link under A124397.
r(n) is not 1/3 times the rational sequence A123747/A123748 which converges to sqrt(5).

Examples

			a(3) = 25 because r(3) = 1 - 2/5 + 6/25 - 4/25 = 17/25 = A124397(3)/a(3).
		

Crossrefs

Cf. A124397 (numerators), A208899 (sqrt(5)/3).

Programs

  • GAP
    List([0..20], n-> DenominatorRat(Sum([0..n], k-> (-1)^k*Binomial(2*k, k)/5^k)) ); # G. C. Greubel, Dec 25 2019
  • Magma
    [Denominator(&+[(-1)^k*(k+1)*Catalan(k)/5^k: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 25 2019
    
  • Maple
    seq(denom(add((-1)^k*binomial(2*k, k)/5^k, k = 0..n)), n = 0..20); # G. C. Greubel, Dec 25 2019
  • Mathematica
    Table[Denominator[Sum[(-1)^k*(k+1)*CatalanNumber[k]/5^k, {k,0,n}]], {n,0,20}] (* G. C. Greubel, Dec 25 2019 *)
  • PARI
    a(n) = denominator(sum(k=0, n, ((-1)^k)*binomial(2*k,k)/5^k)); \\ Michel Marcus, Aug 11 2019
    
  • Sage
    [denominator(sum((-1)^k*(k+1)*catalan_number(k)/5^k for k in (0..n))) for n in (0..20)] # G. C. Greubel, Dec 25 2019
    

Formula

a(n) = denominator(r(n)) with the rationals r(n) = Sum_{k=0..n} (-1)^k * binomial(2*k,k)/5^k, in lowest terms.
r(n) = Sum_{k=0..n} (-1)^k*((2*k-1)!!/(2*k)!!)*(4/5)^k, n>=0, with the double factorials A001147 and A000165.