A124398 Denominators of partial sums of a series for sqrt(5)/3.
1, 5, 25, 25, 125, 3125, 15625, 78125, 78125, 390625, 9765625, 48828125, 244140625, 244140625, 48828125, 6103515625, 30517578125, 152587890625, 152587890625, 762939453125, 19073486328125, 95367431640625, 476837158203125, 19073486328125, 2384185791015625
Offset: 0
Examples
a(3) = 25 because r(3) = 1 - 2/5 + 6/25 - 4/25 = 17/25 = A124397(3)/a(3).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
GAP
List([0..20], n-> DenominatorRat(Sum([0..n], k-> (-1)^k*Binomial(2*k, k)/5^k)) ); # G. C. Greubel, Dec 25 2019
-
Magma
[Denominator(&+[(-1)^k*(k+1)*Catalan(k)/5^k: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 25 2019
-
Maple
seq(denom(add((-1)^k*binomial(2*k, k)/5^k, k = 0..n)), n = 0..20); # G. C. Greubel, Dec 25 2019
-
Mathematica
Table[Denominator[Sum[(-1)^k*(k+1)*CatalanNumber[k]/5^k, {k,0,n}]], {n,0,20}] (* G. C. Greubel, Dec 25 2019 *)
-
PARI
a(n) = denominator(sum(k=0, n, ((-1)^k)*binomial(2*k,k)/5^k)); \\ Michel Marcus, Aug 11 2019
-
Sage
[denominator(sum((-1)^k*(k+1)*catalan_number(k)/5^k for k in (0..n))) for n in (0..20)] # G. C. Greubel, Dec 25 2019
Comments