cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124400 a(n) = a(n-1) + 3*a(n-2) - a(n-4), with a(0)=1, a(1)=1, a(2)=4, a(3)=7.

Original entry on oeis.org

1, 1, 4, 7, 18, 38, 88, 195, 441, 988, 2223, 4992, 11220, 25208, 56645, 127277, 285992, 642615, 1443946, 3244514, 7290360, 16381287, 36808421, 82707768, 185842671, 417584688, 938304280, 2108350576, 4737420745, 10644887785, 23918845740
Offset: 0

Views

Author

Philippe Deléham, Dec 14 2006

Keywords

Comments

Unsigned version of A077920.
The sequence is the INVERT transform of the aerated even-indexed Fibonacci numbers (i.e., of (1, 0, 3, 0, 8, 0, ...)). Sequence A131322 is the INVERT transform of the aerated odd-indexed Fibonacci numbers. - Gary W. Adamson, Feb 07 2014

Crossrefs

Cf. A131322.

Programs

  • GAP
    a:=[1,1,4,7];; for n in [5..35] do a[n]:=a[n-1]+3*a[n-2]-a[n-4]; od; a; # G. C. Greubel, Dec 25 2019
  • Magma
    I:=[1,1,4,7]; [n le 2 select I[n] else Self(n-1) +3*Self(n-2) -Self(n-4): n in [1..35]]; // G. C. Greubel, Dec 25 2019
    
  • Maple
    seq(coeff(series(1/(1-x-3*x^2+x^4), x, n+1), x, n), n = 0..35); # G. C. Greubel, Dec 25 2019
  • Mathematica
    LinearRecurrence[{1,3,0,-1}, {1,1,4,7}, 35] (* G. C. Greubel, Dec 25 2019 *)
    CoefficientList[Series[1/(1-x-3x^2+x^4),{x,0,30}],x] (* Harvey P. Dale, Feb 01 2022 *)
  • PARI
    my(x='x+O('x^35)); Vec(1/(1-x-3*x^2+x^4)) \\ G. C. Greubel, Dec 25 2019
    
  • Sage
    def A124400_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-x-3*x^2+x^4) ).list()
    A124400_list(35) # G. C. Greubel, Dec 25 2019
    

Formula

G.f.: 1/(1-x-3*x^2+x^4).