cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124403 a(n) = -1 + Sum_{i=1..n} Sum_{j=1..n} i^j.

Original entry on oeis.org

0, 7, 55, 493, 5698, 82199, 1419759, 28501115, 651233660, 16676686695, 472883843991, 14705395791305, 497538872883726, 18193397941038735, 714950006521386975, 30046260016074301943, 1344648068888240941016
Offset: 1

Views

Author

Alexander Adamchuk, Dec 14 2006

Keywords

Comments

p divides a(p-2) for prime p>2. p^k divides a(p^k-2) for prime p>2.

Crossrefs

Cf. A086787.

Programs

  • GAP
    List([1..30], n-> n-1 + Sum([2..n], j-> j*(j^n-1)/(j-1)) ); # G. C. Greubel, Dec 25 2019
  • Magma
    [0] cat [n-1 + (&+[j*(j^n-1)/(j-1): j in [2..n]]): n in [2..30]]; // G. C. Greubel, Dec 25 2019
    
  • Maple
    seq( n-1+add(j*(j^n-1)/(j-1), j=2..n), n=1..30); # G. C. Greubel, Dec 25 2019
  • Mathematica
    Table[Sum[i^j,{i,1,n},{j,1,n}]-1,{n,1,25}]
  • PARI
    vector(30, n, n-1 + sum(j=2,n, j*(j^n-1)/(j-1)) ) \\ G. C. Greubel, Dec 25 2019
    
  • Sage
    [n-1 + sum(j*(j^n-1)/(j-1) for j in (2..n)) for n in (1..30)] # G. C. Greubel, Dec 25 2019
    

Formula

a(n) = -1 + Sum_{i=1..n} Sum_{j=1..n} i^j.
a(n) = n - 1 + Sum_{j=2..n} j*(j^n - 1)/(j-1).
a(n) = A086787(n) - 1.