cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A363434 Total number of blocks containing only elements of the same parity in all partitions of [n].

Original entry on oeis.org

0, 1, 2, 7, 24, 97, 412, 1969, 9898, 54461, 313944, 1947613, 12603100, 86760255, 620559230, 4682462777, 36586620348, 299664171115, 2534306825064, 22355119509231, 203115201624030, 1917124624702475, 18598998656476220, 186822424157036439, 1925326063016510832
Offset: 0

Views

Author

Alois P. Heinz, Jun 01 2023

Keywords

Examples

			a(3) = 7 = 0 + 1 + 2 + 1 + 3 : 123, 12|3, 13|2, 1|23, 1|2|3.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, e, o, m) option remember; `if`(n=0, e+o,
          (e+m)*b(n-1, o, e, m)+b(n-1, o, e+1, m)+
           `if`(o=0, 0, o*b(n-1, o-1, e, m+1)))
        end:
    a:= n-> b(n, 0$3):
    seq(a(n), n=0..24);
  • Mathematica
    b[n_, e_, o_, m_] := b[n, e, o, m] = If[n == 0, e + o, (e + m)*b[n-1, o, e, m] + b[n - 1, o, e + 1, m] + If[o == 0, 0, o*b[n - 1, o - 1, e, m + 1]]];
    a[n_] := b[n, 0, 0, 0];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Sep 10 2023, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} k * A124424(n,k).
a(n) = A363452(n) + A363453(n).
a(n) mod 2 = A000035(n).

A124425 Number of partitions of the set {1,2,...,n} having no blocks with all entries of the same parity.

Original entry on oeis.org

1, 0, 1, 1, 3, 7, 25, 79, 339, 1351, 6721, 31831, 179643, 979567, 6166105, 37852039, 262308819, 1784037031, 13471274401, 100285059751, 818288740923, 6604485845167, 57836113793305, 502235849694679, 4693153430067699, 43572170967012871, 432360767273547841
Offset: 0

Views

Author

Emeric Deutsch, Nov 01 2006

Keywords

Comments

Column 0 of A124424.

Examples

			a(4) = 3 because we have 1234, 14|23 and 12|34.
		

Crossrefs

Programs

  • Maple
    Q[0]:=1: for n from 1 to 27 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: seq(subs({t=0,s=0,x=1},Q[n]),n=0..27);
    # second Maple program:
    a:= proc(n) local g, u; g:= floor(n/2); u:= ceil(n/2);
          add(Stirling2(g, k)*Stirling2(u, k)*k!, k=0..g)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 24 2013
  • Mathematica
    a[n_] := Module[{g=Floor[n/2], u=Ceiling[n/2]}, Sum[StirlingS2[g, k]*StirlingS2[u, k]*k!, {k, 0, g}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 26 2015, after Alois P. Heinz *)

Formula

a(n) = Q[n](0,0,1), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.
a(n) = Sum_{k=0..floor(n/2)} Stirling2(floor(n/2),k)*Stirling2(ceiling(n/2),k)*k!. - Alois P. Heinz, Oct 24 2013

A363435 Number of partitions of [2n] having exactly n blocks with all elements of the same parity.

Original entry on oeis.org

1, 0, 5, 42, 569, 9470, 191804, 4534502, 122544881, 3721101192, 125331498349, 4634063018948, 186515332107196, 8114659545679752, 379362605925991692, 18961051425453713478, 1008752282616284996865, 56905048753221935350268, 3392250956149146382053539
Offset: 0

Views

Author

Alois P. Heinz, Jun 01 2023

Keywords

Examples

			a(2) = 5: 13|24, 14|2|3, 1|2|34, 1|23|4, 12|3|4.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, expand(x*
          add(g(n-j)*binomial(n-1, j-1), j=1..n)))
        end:
    S:= (n, k)-> coeff(g(n), x, k):
    b:= proc(g, u) option remember;
          add(S(g, k)*S(u, k)*k!, k=0..min(g, u))
        end:
    T:= proc(n, k) option remember; local g, u; g:= floor(n/2); u:= ceil(n/2);
          add(add(add(binomial(g, i)*S(i, h)*binomial(u, j)*
          S(j, k-h)*b(g-i, u-j), j=k-h..u), i=h..g), h=0..k)
        end:
    a:= n-> T(2*n, n):
    seq(a(n), n=0..18);
  • Mathematica
    b[g_, u_] := b[g, u] = Sum[StirlingS2[g, k]*StirlingS2[u, k]*k!, {k, 0, Min[g, u]}];
    T[n_, k_] := Module[{g, u}, g = Floor[n/2]; u = Ceiling[n/2]; Sum[Sum[Sum[ Binomial[g, i]*StirlingS2[i, h]*Binomial[u, j]*StirlingS2[j, k - h]*b[g - i, u - j], {j, k - h, u}], {i, h, g}], {h, 0, k}]];
    a[n_] := T[2n, n];
    Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Oct 20 2023, after Alois P. Heinz in A124424 *)

Formula

a(n) = A124424(2n,n).
Conjecture: Limit_{n->oo} (a(n)/n!)^(1/n) = A238258 = -2 / (LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))) = 3.0882773... - Vaclav Kotesovec, Oct 21 2023
Showing 1-3 of 3 results.