A124430 Eigenvector of triangle A124428.
1, 1, 2, 3, 7, 13, 31, 61, 144, 296, 714, 1534, 3761, 8303, 20495, 46115, 114461, 261445, 651114, 1503207, 3749017, 8726147, 21788311, 51072555, 127698665, 301244477, 754496298, 1790598079, 4494019431, 10726676701, 26983034009
Offset: 0
Keywords
Examples
a(5) = 1*a(0) + 6*a(1) + 3*a(2) = 1*1 + 6*1 + 3*2 = 13; a(6) = 1*a(0) + 9*a(1) + 9*a(2) + 1*a(3) = 1*1 + 9*1 + 9*2 + 1*3 = 31. Triangle A124428(n,k) = C([n/2],k)*C([(n+1)/2],k) begins: 1; 1; 1, 1; 1, 2; 1, 4, 1; 1, 6, 3; 1, 9, 9, 1; 1, 12, 18, 4; 1, 16, 36, 16, 1; ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
a[n_]:= a[n] = If[n==0, 1, Sum[Binomial[Floor[n/2], k]*Binomial[Floor[(n + 1)/2], k]*a[k], {k,0,Floor[n/2]}]]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Feb 24 2019 *)
-
PARI
{a(n)=if(n==0,1,sum(k=0,n\2,a(k)*binomial(n\2,k)*binomial((n+1)\2,k)))}
Formula
a(n) = Sum_{k=0..[n/2]} a(k)*C([n/2],k)*C([(n+1)/2],k) for n>0, with a(0)=1 and [] means floor().