cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124434 LCM (least common multiple) of A001043 (sum of consecutive primes) and A001223 (difference of consecutive primes).

Original entry on oeis.org

5, 8, 12, 36, 24, 60, 36, 84, 156, 60, 204, 156, 84, 180, 300, 336, 120, 384, 276, 144, 456, 324, 516, 744, 396, 204, 420, 216, 444, 1680, 516, 804, 276, 1440, 300, 924, 960, 660, 1020, 1056, 360, 1860, 384, 780, 396, 2460, 2604, 900, 456, 924, 1416, 480, 2460
Offset: 1

Views

Author

Mitch Cervinka (Mitch.Cervinka(AT)eds.com), Dec 15 2006

Keywords

Examples

			a(3)=12 because prime(3)=5, prime(4)=7 and lcm(7+5, 7-5) = lcm(12,2) = 12.
		

Crossrefs

Programs

  • Mathematica
    LCM[Total[#],#[[2]]-#[[1]]]&/@Partition[Prime[Range[60]],2,1] (* Harvey P. Dale, Apr 19 2013 *)
    Join[{5}, Table[(Prime[n + 1]^2 - Prime[n]^2)/2, {n, 2, 59}]] (* Jon Maiga, Jan 17 2019 *)
  • PARI
    a(n) = my(p = prime(n), q = prime(n+1)); lcm(q+p, q-p); \\ Michel Marcus, Mar 15 2018

Formula

a(n) = lcm((prime(n+1)+prime(n)), (prime(n+1)-prime(n))).
a(n) = (prime(n+1)^2 - prime(n)^2)/2 for n > 1. - Jon Maiga, Jan 17 2019