A124434 LCM (least common multiple) of A001043 (sum of consecutive primes) and A001223 (difference of consecutive primes).
5, 8, 12, 36, 24, 60, 36, 84, 156, 60, 204, 156, 84, 180, 300, 336, 120, 384, 276, 144, 456, 324, 516, 744, 396, 204, 420, 216, 444, 1680, 516, 804, 276, 1440, 300, 924, 960, 660, 1020, 1056, 360, 1860, 384, 780, 396, 2460, 2604, 900, 456, 924, 1416, 480, 2460
Offset: 1
Examples
a(3)=12 because prime(3)=5, prime(4)=7 and lcm(7+5, 7-5) = lcm(12,2) = 12.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
LCM[Total[#],#[[2]]-#[[1]]]&/@Partition[Prime[Range[60]],2,1] (* Harvey P. Dale, Apr 19 2013 *) Join[{5}, Table[(Prime[n + 1]^2 - Prime[n]^2)/2, {n, 2, 59}]] (* Jon Maiga, Jan 17 2019 *)
-
PARI
a(n) = my(p = prime(n), q = prime(n+1)); lcm(q+p, q-p); \\ Michel Marcus, Mar 15 2018
Formula
a(n) = lcm((prime(n+1)+prime(n)), (prime(n+1)-prime(n))).
a(n) = (prime(n+1)^2 - prime(n)^2)/2 for n > 1. - Jon Maiga, Jan 17 2019