cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124497 Number of 1-2-3 trees with n edges and with thinning limbs.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 48, 116, 288, 724, 1849, 4768, 12423, 32628, 86342, 229952, 616042, 1659012, 4489101, 12199521, 33284546, 91140797, 250396629, 690043032, 1907022197, 5284167884, 14677681554, 40862469713, 114001697975
Offset: 0

Views

Author

Emeric Deutsch and Louis Shapiro, Nov 04 2006

Keywords

Comments

A 1-2-3 tree is an ordered tree with vertices of outdegree at most 3. A rooted tree with thinning limbs is such that if a node has k children, all its children have at most k children.

Crossrefs

Programs

  • Maple
    C:=x->(1-sqrt(1-4*x))/2/x: T:=x->2/sqrt(3*x)*sin((1/3)*arcsin(sqrt(27*x/4))): M2:=C(z^2/(1-z))/(1-z): G:=M2*T(M2^2*z^3): Gser:=series(G,z=0,40): seq(coeff(Gser,z,n),n=0..33);
  • Mathematica
    Table[(Sum[Binomial[3*m, m] * Sum[(Binomial[2*m + 2*k, k]*Binomial[n - m - k, 2*m + k])/(2*m + k + 1), {k, 0, n - m}], {m, 1, n + 2}]) + Sum[(Binomial[2*k, k]*Binomial[n - k, k])/(k + 1), {k, 0, n/2}], {n, 0, 40}] (* Vaclav Kotesovec, Apr 22 2016, after Vladimir Kruchinin *)
  • Maxima
    a(n):=(sum(binomial(3*m,m)*sum((binomial(2*m+2*k,k)*binomial(n-m-k,2*m+k))/(2*m+k+1),k,0,n-m),m,1,n+2))+sum((binomial(2*k,k)*binomial(n-k,k))/(k+1),k,0,n/2); /* Vladimir Kruchinin, Apr 22 2016 */

Formula

G.f.: H*T(H^2*z^3), where T=2/sqrt(3*x)*sin((1/3)*arcsin(sqrt(27*x/4))) (solution of T=1+zT^3, T(0)=1), H=C(z^2/(1-z))/(1-z) and C(x)=[1-sqrt(1-4x)]/(2x) is the Catalan function.
More generally, if M[k](z) is the g.f. of the 1-2-...-k trees with thinning limbs and C[k](z)=1+z*{C[k](z)}^k is the g.f. of the k-ary trees, then M[k](z)=M[k-1](z)C[k](M[k-1]^(k-1)*z^k).
a(n) = Sum_{m=1..n+2} (binomial(3*m,m)*Sum_{k=0..n-m}((binomial(2*m+2*k,k)* binomial(n-m-k,2*m+k))/(2*m+k+1))) + Sum_{k=0..n/2}((binomial(2*k,k)*binomial(n-k,k))/(k+1)). - Vladimir Kruchinin, Apr 24 2016
a(n) ~ c * d^n / n^(3/2), where d = (116 + (13044347 - 19683*sqrt(419729))^(1/3) + (13044347 + 19683*sqrt(419729))^(1/3)) / 162 = 2.949682448495588889993... and c = sqrt((9801741469 + 2*(101206884976506223911903300479 - 12725091747254383734308121 * sqrt(419729))^(1/3) + 2*(101206884976506223911903300479 + 12725091747254383734308121 * sqrt(419729))^(1/3)) / (773*Pi)) / 2916 = 1.1733468012519971025510728494463... . - Vaclav Kotesovec, Apr 22 2016